A Brain-Friendly Guide

Head First Data Analysis

Predict your raise with linear regression

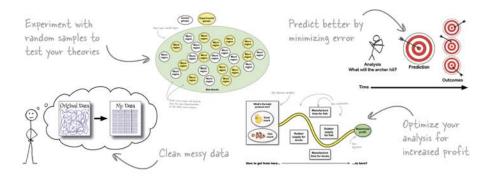
Experiment to discover who your customers *really* are

Load important statistical concepts directly into your brain A learner's guide to big numbers, statistics, and good decisions

Sell more toys by optimizing your business model

Overcome your cognitive biases

Clean messy data for efficient analysis


Head First Data Analysis

Information Theory/Data Analysis

What will you learn from this book?

There's a whole world of data out there, and it's your job to make sense of it all. Where to begin? *Head First Data Analysis* helps you organize your data in Excel or OpenOffice, take it further with R, find meaningful patterns with scatterplots and histograms, draw conclusions using heuristics, predict the future by experimenting and testing hypotheses, and display findings with clear visualizations.

Whether you're a product developer researching the viability of a new product, a marketing manager gauging the effectiveness of a campaign, a salesperson presenting data to clients, or a lone entrepreneur responsible for all these data-intensive functions and more, *Head First Data Analysis* is a complete learning experience for making data the most useful tool in your business.

What's so special about this book?

We think your time is too valuable to waste struggling with new concepts. Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, *Head First Data Analysis* uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.

oreilly.com headfirstlabs.com

Free online edition for 45 days with purchase of this book. Details on last page. "It's about time a straightforward and comprehensive guide to analyzing data was written that makes learning the concepts simple and fun. Concepts are good in theory and even better in practicality."

— Anthony Rose, President, Support Analytics

"Head First Data
Analysis shows how
to find and unlock
the power of data in
everyday life and
how systematic data
analysis can
improve decision
making."

— Eric Heilman, Statistics teacher, Georgetown Preparatory School

"Buried under mountains of data? Fill your toolbox with the analytical skills that give you an edge and turn raw numbers into real knowledge."

— Bill Mietelski, Software engineer

Advance Praise for Head First Data Analysis

"It's about time a straightforward and comprehensive guide to analyzing data was written that makes learning the concepts simple and fun. It will change the way you think and approach problems using proven techniques and free tools. Concepts are good in theory and even better in practicality."

- Anthony Rose, President, Support Analytics

"Head First Data Analysis does a fantastic job of giving readers systematic methods to analyze real-world problems. From coffee, to rubber duckies, to asking for a raise, Head First Data Analysis shows the reader how to find and unlock the power of data in everyday life. Using everything from graphs and visual aides to computer programs like Excel and R, Head First Data Analysis gives readers at all levels accessible ways to understand how systematic data analysis can improve decision making both large and small."

- Eric Heilman, Statistics teacher, Georgetown Preparatory School

"Buried under mountains of data? Let Michael Milton be your guide as you fill your toolbox with the analytical skills that give you an edge. In *Head First Data Analysis*, you'll learn how to turn raw numbers into real knowledge. Put away your Ouija board and tarot cards; all you need to make good decisions is some software and a copy of this book."

- Bill Mietelski, Software engineer

Praise for other Head First books

"Kathy and Bert's *Head First Java* transforms the printed page into the closest thing to a GUI you've ever seen. In a wry, hip manner, the authors make learning Java an engaging 'what're they gonna do next?' experience."

-Warren Keuffel, Software Development Magazine

"Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status, *Head First Java* covers a huge amount of practical matters that other texts leave as the dreaded "exercise for the reader..." It's clever, wry, hip and practical—there aren't a lot of textbooks that can make that claim and live up to it while also teaching you about object serialization and network launch protocols."

—Dr. Dan Russell, Director of User Sciences and Experience Research IBM Almaden Research Center (and teacher of Artificial Intelligence at Stanford University)

"It's fast, irreverent, fun, and engaging. Be careful—you might actually learn something!"

—Ken Arnold, former Senior Engineer at Sun Microsystems Coauthor (with James Gosling, creator of Java), *The Java Programming Language*

"I feel like a thousand pounds of books have just been lifted off of my head."

-Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

"Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practical development strategies—gets my brain going without having to slog through a bunch of tired stale professor-speak."

-Travis Kalanick, Founder of Scour and Red Swoosh Member of the MIT TR100

"There are books you buy, books you keep, books you keep on your desk, and thanks to O'Reilly and the *Head First* crew, there is the ultimate category, *Head First* books. They're the ones that are dog-eared, mangled, and carried everywhere. *Head First SQL* is at the top of my stack. Heck, even the PDF I have for review is tattered and torn."

- Bill Sawyer, ATG Curriculum Manager, Oracle

"This book's admirable clarity, humor and substantial doses of clever make it the sort of book that helps even non-programmers think well about problem-solving."

— Cory Doctorow, co-editor of BoingBoing Author, Down and Out in the Magic Kingdom and Someone Comes to Town, Someone Leaves Town "I received the book yesterday and started to read it...and I couldn't stop. This is definitely très 'cool.' It is fun, but they cover a lot of ground and they are right to the point. I'm really impressed."

— Erich Gamma, IBM Distinguished Engineer, and co-author of *Design Patterns*

"One of the funniest and smartest books on software design I've ever read."

- Aaron LaBerge, VP Technology, ESPN.com

"What used to be a long trial and error learning process has now been reduced neatly into an engaging paperback."

- Mike Davidson, CEO, Newsvine, Inc.

"Elegant design is at the core of every chapter here, each concept conveyed with equal doses of pragmatism and wit."

- Ken Goldstein, Executive Vice President, Disney Online

"I ♥ Head First HTML with CSS & XHTML—it teaches you everything you need to learn in a 'fun coated' format."

- Sally Applin, UI Designer and Artist

"Usually when reading through a book or article on design patterns, I'd have to occasionally stick myself in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may sound, this book makes learning about design patterns fun.

"While other books on design patterns are saying 'Buehler... Buehler... Buehler...' this book is on the float belting out 'Shake it up, baby!"

- Eric Wuehler

"I literally love this book. In fact, I kissed this book in front of my wife."

- Satish Kumar

Other related books from O'Reilly

Analyzing Business Data with Excel

Excel Scientific and Engineering Cookbook

Access Data Analysis Cookbook

Other books in O'Reilly's Head First series

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First PMP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Physics

Head First Statistics

Head First Rails

Head First PHP & MySQL

Head First Algebra

Head First Web Design

Head First Networking

Head First Data Analysis

Wouldn't it be dreamy if there
was a book on data analysis that
wasn't just a glorified printout of
Microsoft Excel help files? But it's
probably just a fantasy...

Michael Milton

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Head First Data Analysis

by Michael Milton

Copyright © 2009 Michael Milton. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (*safari.oreilly.com*). For more information, contact our corporate/institutional sales department: (800) 998-9938 or *corporate@oreilly.com*.

Series Creators: Kathy Sierra, Bert Bates

Series Editor: Brett D. McLaughlin

Editor: Brian Sawyer

Cover Designers: Karen Montgomery

Production Editor: Scott DeLugan
Proofreader: Nancy Reinhardt

Indexer: Jay Harward

Page Viewers: Mandarin, the fam, and Preston

Printing History:

July 2009: First Edition.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. The *Head First* series designations, *Head First Data Analysis* and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No data was harmed in the making of this book.

This book uses RepKover, a durable and flexible lay-flat binding.

ISBN: 978-0-596-15393-9

M

Author of Head First Data Analysis

Michael Milton -

Michael Milton has spent most of his career helping nonprofit organizations improve their fundraising by interpreting and acting on the data they collect from their donors.

He has a degree in philosophy from New College of Florida and one in religious ethics from Yale University. He found reading *Head First* to be a revelation after spending years reading *boring* books filled with terribly important stuff and is grateful to have the opportunity to write an *exciting* book filled with terribly important stuff.

When he's not in the library or the bookstore, you can find him running, taking pictures, and brewing beer.

Table of Contents (Summary)

	Intro	xxvii
1	Introduction to Data Analysis: Break It Down	1
2	Experiments: Test Your Theories	37
3	Optimization: Take It to the Max	75
4	Data Visualization: Pictures Make You Smarter	111
5	Hypothesis Testing: Say It Ain't So	139
6	Bayesian Statistics: Get Past First Base	169
7	Subjective Probabilities: Numerical Belief	191
8	Heuristics: Analyze Like a Human	225
9	Histograms: The Shape of Numbers	251
10	Regression: Prediction	279
11	Error: Err Well	315
12	Relational Databases: Can You Relate?	359
13	Cleaning Data: Impose Order	385
i	Leftovers: The Top Ten Things (We Didn't Cover)	417
ii	Install R: Start R Up!	427
iii	Install Excel Analysis Tools: The ToolPak	431

Table of Contents (the real thing)

Intro

Your brain on data analysis. Here *you* are trying to *learn* something, while here your *brain* is doing you a favor by making sure the learning doesn't *stick*. Your brain's thinking, "Better leave room for more important things, like which wild animals to avoid and whether naked snowboarding is a bad idea." So how *do* you trick your brain into thinking that your life depends on knowing data analysis?

Who is this book for?	xxviii
We know what you're thinking	xxix
Metacognition	xxxi
Bend your brain into submission	xxxiii
Read Me	xxxiv
The technical review team	xxxvi
Acknowledgments	xxxvii

introduction to data analysis

Break it down

Data is everywhere.

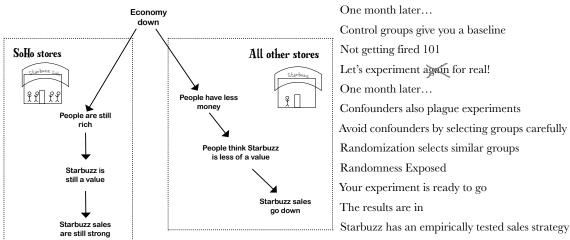
Nowadays, everyone has to deal with mounds of data, whether they call themselves "data analysts" or not. But people who possess a toolbox of data analysis skills have a massive edge on everyone else, because they understand what to *do* with all that stuff. They know how to translate raw numbers into intelligence that drives real-world action. They know how to break down and plex problems and data sets to get right to the heart of the problems SS.

	structure com
Define	in their busines
Disassemble	
\ \mathread \mathread \ \mathread \ \mathread \ \mathread \ \mathread \ \mathread \mathread \mathread \ \mathread \ \mathread \m	
	Evaluate
	Decide
v	\vee

Acme Cosmetics needs your help	2
The CEO wants data analysis to help increase sales	3
Data analysis is careful thinking about evidence	4
Define the problem	5
Your client will help you define your problem	6
Acme's CEO has some feedback for you	8
Break the problem and data into smaller pieces	9
Now take another look at what you know	10
Evaluate the pieces	13
Analysis begins when you insert yourself	14
Make a recommendation	15
Your report is ready	16
The CEO likes your work	17
An article just came across the wire	18
You let the CEO's beliefs take you down the wrong path	20
Your assumptions and beliefs about the world are your mental model	21
Your statistical model depends on your mental model	22
Mental models should always include what you don't know	25
The CEO tells you what he doesn't know	26
Acme just sent you a huge list of raw data	28
Time to drill further into the data	31
General American Wholesalers confirms your impression	32
Here's what you did	35
Your analysis led your client to a brilliant decision	36

2

experiments


Test your theories

2

Can you show what you believe?

In a real **empirical** test? There's nothing like a good experiment to solve your problems and show you the way the world really works. Instead of having to rely exclusively on your **observational data**, a well-executed experiment can often help you make **causal connections**. Strong empirical data will make your analytical judgments all the more powerful.

It's a coffee recession! 38 The Starbuzz board meeting is in three months 39 The Starbuzz Survey 41 Always use the method of comparison 42 Comparisons are key for observational data 43 44 Could value perception be causing the revenue decline? 46 A typical customer's thinking Observational studies are full of confounders 47 How location might be confounding your results 48 Manage confounders by breaking the data into chunks 50 53 It's worse than we thought! 54 You need an experiment to say which strategy will work best The Starbuzz CEO is in a big hurry 55 Starbuzz drops its prices 56 One month later... 57 Control groups give you a baseline 58 Not getting fired 101 61 Let's experiment again for real! 62 One month later... 63

64

65

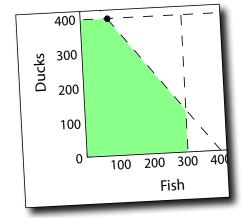
67

68

71

72

73

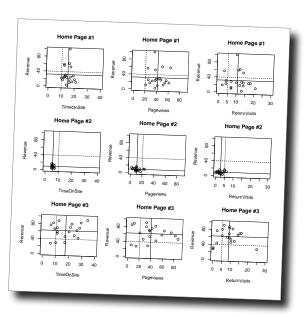

optimization

Take it to the max

We all want more of something.

And we're always trying to figure out how to get it. *If* the things we want more of—profit, money, efficiency, speed—can be represented numerically, then chances are, there's an tool of data analysis to help us tweak our *decision variables*, which will help us find the **solution** or *optimal point* where we get the most of what we want. In this chapter, you'll be using one of those tools and the powerful spreadsheet **Solver** package that implements it.

You're now in the bath toy game	76
Constraints limit the variables you control	79
Decision variables are things you can control	79
You have an optimization problem	80
Find your objective with the objective function	81
Your objective function	82
Show product mixes with your other constraints	83
Plot multiple constraints on the same chart	84
Your good options are all in the feasible region	85
Your new constraint changed the feasible region	87
Your spreadsheet does optimization	90
Solver crunched your optimization problem in a snap	94
Profits fell through the floor	97
Your model only describes what you put into it	98
Calibrate your assumptions to your analytical objectives	99
Watch out for negatively linked variables	103
Your new plan is working like a charm	108
Your assumptions are based on an ever-changing reality	109


data visualization

Pictures make you smarter

4

You need more than a table of numbers.

Your data is brilliantly complex, with more variables than you can shake a stick at. Mulling over mounds and mounds of spreadsheets isn't just boring; it can actually be a waste of your time. A clear, highly multivariate visualization can, in a small space, show you the forest that you'd miss for the trees if you were just looking at spreadsheets all the time.

New Army needs to optimize their website	112
The results are in, but the information designer is out	113
The last information designer submitted these three infographics	114
What data is behind the visualizations?	115
Show the data!	116
Here's some unsolicited advice from the last designer	117
Too much data is never your problem	118
Making the data pretty isn't your problem either	119
Data visualization is all about making the right comparisons	120
Your visualization is already more useful than the rejected ones	123
Use scatterplots to explore causes	124
The best visualizations are highly multivariate	125
Show more variables by looking at charts together	126
The visualization is great, but the web guru's not satisfied yet	130
Good visual designs help you think about causes	131
The experiment designers weigh in	132
The experiment designers have some hypotheses of their own	135
The client is pleased with your work	136
Orders are coming in from everywhere!	137

hypothesis testing Say it ain't so

The world can be tricky to explain.

And it can be fiendishly difficult when you have to deal with complex, heterogeneous data to anticipate future events. This is why analysts don't just take the obvious explanations and assume them to be true: the careful reasoning of data analysis enables you to meticulously evaluate a bunch of options so that you can incorporate all the information you have into your models. You're about to learn about **falsification**, an unintuitive but powerful way to do just that.

Gimme some skin	140
When do we start making new phone skins?	141
PodPhone doesn't want you to predict their next move	142
Here's everything we know	143
ElectroSkinny's analysis does fit the data	144
ElectroSkinny obtained this confidential strategy memo	145
Variables can be negatively or positively linked	146
Causes in the real world are networked, not linear	149
Hypothesize PodPhone's options	150
You have what you need to run a hypothesis test	151
Falsification is the heart of hypothesis testing	152
Diagnosticity helps you find the hypothesis with the least disconfirmation	160
You can't rule out all the hypotheses, but you can say which is strongest	163
You just got a picture message	164
It's a launch!	167

bayesian statistics

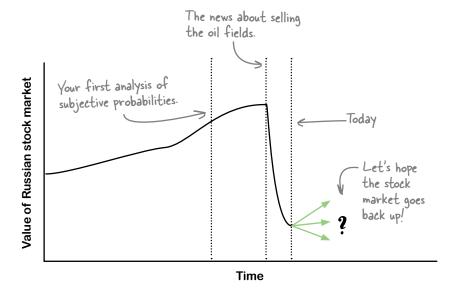
Get past first base

You'll always be collecting new data.

And you need to make sure that every analysis you do incorporates the data you have that's relevant to your problem. You've learned how *falsification* can be used to deal with heterogeneous data sources, but what about **straight up probabilities**? The answer involves an extremely handy analytic tool called **Bayes' rule**, which will help you incorporate your **base rates** to uncover not-so-obvious insights with ever-changing data.

170
173
174
175
176
177
178
181
182
182
183
184
185
186
189

subjective probabilities


Numerical belief

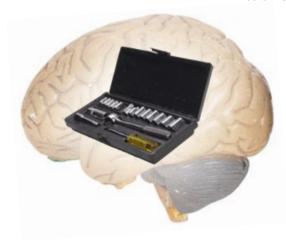
7

Sometimes, it's a good idea to make up numbers.

Seriously. But only if those numbers describe your own mental states, expressing your beliefs. **Subjective probability** is a straightforward way of injecting some real *rigor* into your hunches, and you're about to see how. Along the way, you are going to learn how to evaluate the spread of data using **standard deviation** and enjoy a special guest appearance from one of the more powerful analytic tools you've learned.

Backwater Investments needs your help	192
Their analysts are at each other's throats	193
Subjective probabilities describe expert beliefs	198
Subjective probabilities might show no real disagreement after all	199
The analysts responded with their subjective probabilities	201
The CEO doesn't see what you're up to	202
The CEO loves your work	207
The standard deviation measures how far points are from the average	208
You were totally blindsided by this news	213
Bayes' rule is great for revising subjective probabilities	217
The CEO knows exactly what to do with this new information	223
Russian stock owners rejoice!	224

heuristics


8

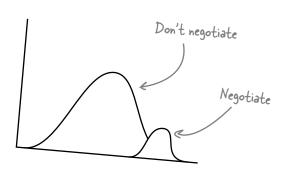
Analyze like a human

The real world has more variables than you can handle.

There is always going to be data that you can't have. And even when you do have data on most of the things you want to understand, *optimizing* methods are often **elusive** and **time consuming**. Fortunately, most of the actual thinking you do in life is not "rational maximizing"—it's processing incomplete and uncertain information with rules of thumb so that you can make decisions quickly. What is really cool is that these rules can **actually work** and are important (and necessary) tools for data analysts.

LitterGitters submitted their report to the city council	226
The LitterGitters have really cleaned up this town	227
The LitterGitters have been measuring their campaign's effectiveness	228
The mandate is to reduce the tonnage of litter	229
Tonnage is unfeasible to measure	230
Give people a hard question, and they'll answer an easier one instead	231
Littering in Dataville is a complex system	232
You can't build and implement a unified litter-measuring model	233
Heuristics are a middle ground between going with your gut and optimization	236
Use a fast and frugal tree	239
Is there a simpler way to assess LitterGitters' success?	240
Stereotypes are heuristics	244
Your analysis is ready to present	246
Looks like your analysis impressed the city council members	249

histograms


9

The shape of numbers

How much can a bar graph tell you?

There are about a zillion ways of **showing data with pictures**, but one of them is special. **Histograms**, which are kind of similar to bar graphs, are a super-fast and easy way to summarize data. You're about to use these powerful little charts to measure your data's **spread**, **variability**, **central tendency**, and more. No matter how large your data set is, if you draw a histogram with it, you'll be able to "see" what's happening inside of it. And you're about to do it with a new, free, crazy-powerful **software tool**.

Your annual review is coming up	252
Going for more cash could play out in a bunch of different ways	254
Here's some data on raises	255
Histograms show frequencies of groups of numbers	265
Gaps between bars in a histogram mean gaps among the data points	263
Install and run R	264
Load data into R	265
R creates beautiful histograms	266
Make histograms from subsets of your data	27
Negotiation pays	276
What will negotiation mean for you?	27

regression

Prediction

10

Predict it.

Regression is an incredibly powerful statistical tool that, when used correctly, has the ability to help you predict certain values. When used with a controlled experiment, regression can actually help you predict the future. Businesses use it like crazy to help them build models to explain customer behavior. You're about to see that the judicious use of regression can be very profitable indeed.

What are you going to do with all this money?	280
An analysis that tells people what to ask for could be huge	283
Behold the Raise Reckoner!	284
Inside the algorithm will be a method to predict raises	286
Scatterplots compare two variables	292
A line could tell your clients where to aim	294
Predict values in each strip with the graph of averages	297
The regression line predicts what raises people will receive	298
The line is useful if your data shows a linear correlation	300
You need an equation to make your predictions precise	304
Tell R to create a regression object	306
The regression equation goes hand in hand with your scatterplot	309
The regression equation is the Raise Reckoner algorithm	310
Your raise predictor didn't work out as planned	313

THE RAISE RECKONER

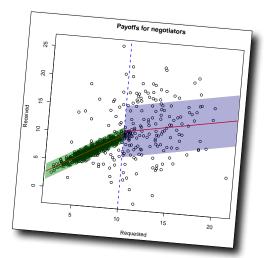
What will happen if we request a certain amount of money? Find out with this equation:

y=2.3+0.7x

Where x is the amount requested, and y is the amount we can expect to receive.

Download at Boykma. Com

error


11

Err well

The world is messy.

So it should be no surprise that your predictions rarely hit the target squarely. But if you offer a prediction with an **error range**, you and your clients will know not only the average predicted value, but also how far you expect typical deviations from that error to be. Every time you express error, you offer a much richer perspective on your predictions and beliefs. And with the tools in this chapter, you'll also learn about how to get error under control, getting it as low as possible to increase confidence.

Your clients are pretty ticked off	316
What did your raise prediction algorithm do?	317
The segments of customers	318
The guy who asked for 25% went outside the model	321
How to handle the client who wants a prediction outside the data range	322
The guy who got fired because of extrapolation has cooled off	327
You've only solved part of the problem	328
What does the data for the screwy outcomes look like?	329
Chance errors are deviations from what your model predicts	330
Error is good for you and your client	334
Chance Error Exposed	335
Specify error quantitatively	336
Quantify your residual distribution with Root Mean Squared error	337
Your model in R already knows the R.M.S. error	338
R's summary of your linear model shows your R.M.S. error	340
Segmentation is all about managing error	346
Good regressions balance explanation and prediction	350
Your segmented models manage error better than the original model	352
Your clients are returning in droves	357

relational databases Can you relate?

12

How do you structure really, really multivariate data?

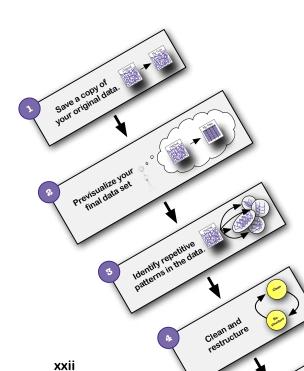
A spreadsheet has only *two dimensions*: rows and columns. And if you have a bunch of dimensions of data, the **tabular format** gets old really quickly. In this chapter, you're about to see firsthand where spreadsheets make it really hard to manage multivariate data and learn **how relational database management systems** make it easy to store and retrieve countless permutations of multivariate data.

The Dataville Dispatch wants to analyze sales	360
Here's the data they keep to track their operations	361
You need to know how the data tables relate to each other	362
A database is a collection of data with well-specified relations to each other	365
Trace a path through the relations to make the comparison you need	366
Create a spreadsheet that goes across that path	366
Your summary ties article count and sales together	371
Looks like your scatterplot is going over really well	374
Copying and pasting all that data was a pain	375
Relational databases manage relations for you	376
Dataville Dispatch built an RDBMS with your relationship diagram	377
Dataville Dispatch extracted your data using the SQL language	379
Comparison possibilities are endless if your data is in a RDBMS	382
Vou're on the cover	202

cleaning data Impose order

rour finished

Dowpload at Boykma.Com


Your data is useless...

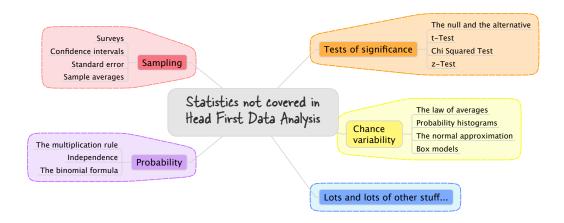
...if it has messy structure. And a lot of people who *collect* data do a crummy job of maintaining a neat structure. If your data's not neat, you can't slice it or dice it, run formulas on it, or even really *see* it. You might as well just ignore it completely, right? Actually, you can do better. With a *clear vision* of how you need it to look and a few *text manipulation tools*, you can take the funkiest, craziest mess of data and *whip* it into something useful.

Just got a client list from a defunct competitor

The dirty secret of data analysis	387
Head First Head Hunters wants the list for their sales team	388
Cleaning messy data is all about preparation	392
Once you're organized, you can fix the data itself	393
Use the # sign as a delimiter	394
Excel split your data into columns using the delimiter	395
Use SUBSTITUTE to replace the carat character	399
You cleaned up all the first names	400
The last name pattern is too complex for SUBSTITUTE	402
Handle complex patterns with nested text formulas	403
R can use regular expressions to crunch complex data patterns	404
The sub command fixed your last names	406
Now you can ship the data to your client	407
Maybe you're not quite done yet	408
Sort your data to show duplicate values together	409
The data is probably from a relational database	412
Remove duplicate names	413
You created nice, clean, unique records	414
Head First Head Hunters is recruiting like gangbusters!	415
Leaving town	416

386

leftovers



The Top Ten Things (we didn't cover)

You've come a long way.

But data analysis is a vast and constantly evolving field, and there's so much left the learn. In this appendix, we'll go over ten items that there wasn't enough room to cover in this book but should be high on your list of topics to learn about next.

‡1: Everything else in statistics	418
#2: Excel skills	419
#3: Edward Tufte and his principles of visualization	420
#4: PivotTables	421
#5: The R community	422
#6: Nonlinear and multiple regression	423
#7: Null-alternative hypothesis testing	424
#8: Randomness	424
#9: Google Docs	425
#10: Your expertise	426

install r

Start R up!

Behind all that data-crunching power is enormous complexity.

But fortunately, getting R installed and *started* is something you can accomplish in just a few minutes, and this appendix is about to show you how to pull off your R install without a hitch.

428

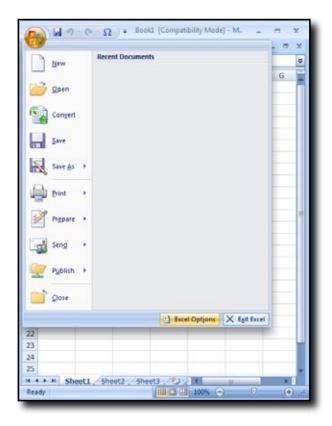
Get started with R

😿 The R Project for Statistical Computing - Windows Internet Explore G - Q http://www.s-groject.org/ 4y X Live Septch 🚰 + 👸 + 🚔 + 💮 Page + 🕲 Tools + The R Project for Statistical Computing About B What is R? Contributors Screenshots What's new? Download CRAN R Project Foundation Members & Donors Making Lists Factor 1 (41%) Factor 5 (19%) Bug Tracking Developer Page Conferences Search Documentation Manuals FAQs Newsletter Getting Started: Wiki R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To devado ad R, please choose your preferred CRAN mirror. . If you have questions about R like how to download and install the software, or what the license terms are, please read our assivers to frequently asked questions before you send as email. Related Projects tp://www.s-project.org/misc/scpclust.R

xxiv

install excel analysis tools

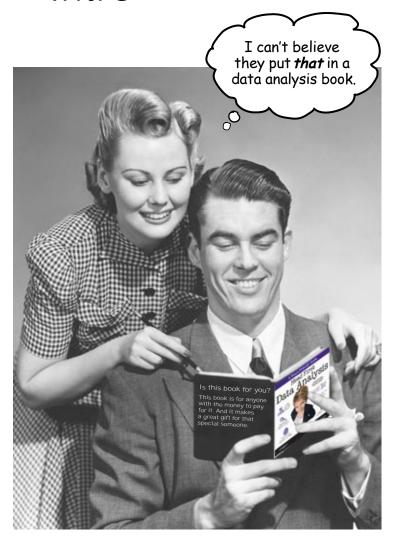
The ToolPak



Some of the best features of Excel aren't installed by default.

That's right, in order to run the optimization from Chapter 3 and the histograms from Chapter 9, you need to activate the **Solver** and the **Analysis ToolPak**, two extensions that are included in Excel by default but not activated without your initiative.

Install the data analysis tools in Excel


432

how to use this book

Intro

In this section we answer the burning question:
"So why DID they put that in a data analysis book?"

Who is this book for?

If you can answer "yes" to all of these:

- Do you feel like there's a world of insights buried in your data that you'd only be able to access if you had the right tools?
- Do you want to learn, understand, and remember how to create brilliant graphics, test hypotheses, run a regression, or clean up messy data?
- Do you prefer stimulating dinner party conversation to dry, dull, academic lectures?

this book is for you.

Who should probably back away from this book?

If you can answer "yes" to any of these:

- Are you a seasoned, brilliant data analyst looking for a survey of bleeding edge data topics?
- Have you never loaded and used Microsoft Excel or OpenOffice calc?
- Are you afraid to try something different? Would you rather have a root canal than mix stripes with plaid? Do you believe that a technical book can't be serious if it anthropomorphizes control groups and objective functions?

this book is *not* for you.

[Note from marketing: this book is for anyone with a credit card.]

We know what you're thinking

"How can this be a serious data analysis book?"

"What's with all the graphics?"

"Can I actually learn it this way?"

We know what your brain is thinking

Your brain craves novelty. It's always searching, scanning, waiting for something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things you encounter? Everything it *can* to stop them from interfering with the brain's *real* job—recording things that *matter*. It doesn't bother saving the boring things; they never make it past the "this is obviously not important" filter.

How does your brain *know* what's important? Suppose you're out for a day hike and a tiger jumps in front of you, what happens inside your head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that's how your brain knows...

This must be important! Don't forget it!

But imagine you're at home, or in a library. It's a safe, warm, tiger-free zone. You're studying Cetting ready for THIS isn't worth You're studying. Getting ready for an exam. Or trying to learn some tough technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain's trying to do you a big favor. It's trying to make sure that this *obviously* non-important content doesn't clutter up scarce resources. Resources that are better spent storing the really big things. Like tigers. Like the danger of fire. Like how you should never have posted those "party" photos on your Facebook page. And there's no simple way to tell your brain, "Hey brain, thank you very much, but no matter how dull this book is, and how little I'm registering on the emotional Richter scale right now, I really do want you to keep this stuff around."

0

Your brain thinks THIS is important.

saving

We think of a "Head First" reader as a learner.

So what does it take to *learn* something? First, you have to get it, then make sure you don't forget it. It's not about pushing facts into your head. Based on the latest research in cognitive science, neurobiology, and educational psychology, learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much more effective (up to 89 percent improvement in recall and transfer studies). It also makes things more understandable. Put the words within or near the graphics they relate to, rather than on the bottom or on another page, and learners will be up to twice as likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students performed up to 40 percent better on post-learning tests if the content spoke directly to the reader, using a first-person, conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language. Don't take yourself too seriously. Which would you pay more attention to: a stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons, nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges, exercises, and thought-provoking questions, and activities that involve both sides of the brain and multiple senses.

Get—and keep—the reader's attention. We've all had the "I really want to learn this but I can't stay awake past page one" experience. Your brain pays attention to things that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn't have to be boring. Your brain will learn much more quickly if it's not.

Touch their emotions. We now know that your ability to remember something is largely dependent on its emotional content. You remember what you care about. You remember when you feel something. No, we're not talking heart-wrenching stories about a boy and his dog. We're talking emotions like surprise, curiosity, fun, "what the...?", and the feeling of "I Rule!" that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize you know something that "I'm more technical than thou" Bob from engineering doesn't.

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more deeply, pay attention to how you pay attention. Think about how you think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we were growing up. We were *expected* to learn, but rarely *taught* to learn.

But we assume that if you're holding this book, you really want to learn data analysis. And you probably don't want to spend a lot of time. If you want to use what you read in this book, you need to *remember* what you read. And for that, you've got to *understand* it. To get the most from this book, or *any* book or learning experience, take responsibility for your brain. Your brain on *this* content.

The trick is to get your brain to see the new material you're learning as Really Important. Crucial to your well-being. As important as a tiger. Otherwise, you're in for a constant battle, with your brain doing its best to keep the new content from sticking.

So just how DO you get your brain to treat data analysis like it was a hungry tiger?

There's the slow, tedious way, or the faster, more effective way. The slow way is about sheer repetition. You obviously know that you *are* able to learn and remember even the dullest of topics if you keep pounding the same thing into your brain. With enough repetition, your brain says, "This doesn't *feel* important to him, but he keeps looking at the same thing *over* and *over*, so I suppose it must be."

The faster way is to do **anything that increases brain activity**, especially different *types* of brain activity. The things on the previous page are a big part of the solution, and they're all things that have been proven to help your brain work in your favor. For example, studies show that putting words *within* the pictures they describe (as opposed to somewhere else in the page, like a caption or in the body text) causes your brain to try to makes sense of how the words and picture relate, and this causes more neurons to fire. More neurons firing = more chances for your brain to *get* that this is something worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they perceive that they're in a conversation, since they're expected to follow along and hold up their end. The amazing thing is, your brain doesn't necessarily *care* that the "conversation" is between you and a book! On the other hand, if the writing style is formal and dry, your brain perceives it the same way you experience being lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning...

I wonder how
I can trick my brain
into remembering
this stuff...

Here's what WE did:

We used *pictures*, because your brain is tuned for visuals, not text. As far as your brain's concerned, a picture really *is* worth a thousand words. And when text and pictures work together, we embedded the text *in* the pictures because your brain works more effectively when the text is *within* the thing the text refers to, as opposed to in a caption or buried in the text somewhere.

We used **redundancy**, saying the same thing in *different* ways and with different media types, and *multiple senses*, to increase the chance that the content gets coded into more than one area of your brain.

We used concepts and pictures in **unexpected** ways because your brain is tuned for novelty, and we used pictures and ideas with at least *some* **emotional** content, because your brain is tuned to pay attention to the biochemistry of emotions. That which causes you to *feel* something is more likely to be remembered, even if that feeling is nothing more than a little **humor**, **surprise**, or **interest**.

We used a personalized, *conversational style*, because your brain is tuned to pay more attention when it believes you're in a conversation than if it thinks you're passively listening to a presentation. Your brain does this even when you're *reading*.

We included more than 80 *activities*, because your brain is tuned to learn and remember more when you *do* things than when you *read* about things. And we made the exercises challenging-yet-do-able, because that's what most people prefer.

We used *multiple learning styles*, because *you* might prefer step-by-step procedures, while someone else wants to understand the big picture first, and someone else just wants to see an example. But regardless of your own learning preference, *everyone* benefits from seeing the same content represented in multiple ways.

We include content for **both sides of your brain**, because the more of your brain you engage, the more likely you are to learn and remember, and the longer you can stay focused. Since working one side of the brain often means giving the other side a chance to rest, you can be more productive at learning for a longer period of time.

And we included **stories** and exercises that present **more than one point of view**, because your brain is tuned to learn more deeply when it's forced to make evaluations and judgments.

We included **challenges**, with exercises, and by asking **questions** that don't always have a straight answer, because your brain is tuned to learn and remember when it has to **work** at something. Think about it—you can't get your **body** in shape just by **watching** people at the gym. But we did our best to make sure that when you're working hard, it's on the **right** things. That **you're not spending one extra dendrite** processing a hard-to-understand example, or parsing difficult, jargon-laden, or overly terse text.

We used **people**. In stories, examples, pictures, etc., because, well, because *you're* a person. And your brain pays more attention to *people* than it does to *things*.

Here's what YOU can do to bend your brain into submission

So, we did our part. The rest is up to you. These tips are a starting point; listen to your brain and figure out what works for you and what doesn't. Try new things.

Cut this out and stick it on your refrigerator.

- 1 Slow down. The more you understand, the less you have to memorize.
 - Don't just *read*. Stop and think. When the book asks you a question, don't just skip to the answer. Imagine that someone really *is* asking the question. The more deeply you force your brain to think, the better chance you have of learning and remembering.
- Do the exercises. Write your own notes.

 We put them in, but if we did them for you, that would be like having someone else do your workouts for you. And don't just *look* at the exercises. **Use a pencil.** There's plenty of evidence that physical activity while learning can increase the learning.
- Read the "There are No Dumb Questions"
 That means all of them. They're not optional sidebars, *they're part of the core content!*Don't skip them.
- Make this the last thing you read before bed. Or at least the last challenging thing.

 Part of the learning (especially the transfer to long-term memory) happens after you put the book down. Your brain needs time on its own, to do more processing. If you put in something new during that processing time, some of what you just learned will be lost.
- Speaking activates a different part of the brain. If you're trying to understand something, or increase your chance of remembering it later, say it out loud. Better still, try to explain it out loud to someone else. You'll learn more quickly, and you might uncover ideas you hadn't known were there when you were reading about it.

- Orink water. Lots of it.
 Your brain works best in a nice bath of fluid.
 Dehydration (which can happen before you ever feel thirsty) decreases cognitive function.
- Pay attention to whether your brain is getting overloaded. If you find yourself starting to skim the surface or forget what you just read, it's time for a break. Once you go past a certain point, you won't learn faster by trying to shove more in, and you might even hurt the process.
- Your brain needs to know that this *matters*. Get involved with the stories. Make up your own captions for the photos. Groaning over a bad joke is *still* better than feeling nothing at all.
 - Get your hands dirty!

 There's only one way to learn data analysis: get your hands dirty. And that's what you're going to do throughout this book. Data analysis is a skill, and the only way to get good at it is to practice. We're going to give you a lot of practice: every chapter has exercises that pose a problem for you to solve. Don't just skip over them—a lot of the learning happens when you solve the exercises. We included a solution to each exercise—don't be afraid to peek at the solution if you get stuck! (It's easy to get snagged on something small.) But try to solve the problem before you look at the solution. And definitely get it working before you move on to the next part of the book.

Read Me

This is a learning experience, not a reference book. We deliberately stripped out everything that might get in the way of learning whatever it is we're working on at that point in the book. And the first time through, you need to begin at the beginning, because the book makes assumptions about what you've already seen and learned.

This book is not about software tools.

Many books with "data analysis" in their titles simply go down the list of Excel functions considered to be related to data analysis and show you a few examples of each. *Head First Data Analysis*, on the other hand, is about how to **be a data analyst**. You'll learn quite a bit about software tools in this book, but they are only a means to the end of learning how to do good data analysis.

We expect you to know how to use basic spreadsheet formulas.

Have you ever used the SUM formula in a spreadsheet? If not, you may want to bone up on spreadsheets a little before beginning this book. While many chapters do not ask you to use spreadsheets at all, the ones that do assume that you know how to use formulas. If you are familiar with the SUM formula, then you're in good shape.

This book is about more than statistics.

There's plenty of statistics in this book, and as a data analyst you should learn as much statistics as you can. Once you're finished with *Head First Data Analysis*, it'd be a good idea to read *Head First Statistics* as well. But "data analysis" encompasses statistics and a number of other fields, and the many non-statistical topics chosen for this book are focused on the practical, nitty-gritty experience of doing data analysis in the real world.

The activities are NOT optional.

The exercises and activities are not add-ons; they're part of the core content of the book. Some of them are to help with memory, some are for understanding, and some will help you apply what you've learned. **Don't skip the exercises.** The crossword puzzles are the

only thing you don't *have* to do, but they're good for giving your brain a chance to think about the words and terms you've been learning in a different context.

The redundancy is intentional and important.

One distinct difference in a *Head First* book is that we want you to *really* get it. And we want you to finish the book remembering what you've learned. Most reference books don't have retention and recall as a goal, but this book is about *learning*, so you'll see some of the same concepts come up more than once.

The book doesn't end here.

We love it when you can find fun and useful extra stuff on book companion sites. You'll find extra stuff on data analysis at the following url:

http://www.headfirstlabs.com/books/hfda/.

The Brain Power exercises don't have answers.

For some of them, there is no right answer, and for others, part of the learning experience of the Brain Power activities is for you to decide if and when your answers are right. In some of the Brain Power exercises, you will find hints to point you in the right direction.

The technical review team

Eric Heilman

Tony Rose

Bill Mietelski

Technical Reviewers:

Eric Heilman graduated Phi Beta Kappa from the Walsh School of Foreign Service at Georgetown University with a degree in International Economics. During his time as an undergraduate in DC, he worked at the State Department and at the National Economic Council at the White House. He completed his graduate work in economics at the University of Chicago. He currently teaches statistical analysis and math at Georgetown Preparatory School in Bethesda, MD.

Bill Mietelski is a Software Engineer and a three-time *Head First* technical reviewer. He can't wait to run a data analysis on his golf stats to help him win on the links.

Anthony Rose has been working in the data analysis field for nearly ten years and is currently the president of Support Analytics, a data analysis and visualization consultancy. Anthony has an MBA concentrated in Management and Finance degree, which is where his passion for data and analysis started. When he isn't working, he can normally be found on the golf course in Columbia, Maryland, lost in a good book, savoring a delightful wine, or simply enjoying time with his young girls and amazing wife.

Acknowledgments

My editor:

Brian Sawyer has been an incredible editor. Working with Brian is like dancing with a professional ballroom dancer. All sorts of important stuff is happening that you don't really understand, but you look great, and you're having a blast. Ours has been a exciting collaboration, and his support, feedback, and ideas have been invaluable.

The O'Reilly Team:

Brett McLaughlin saw the vision for this project from the beginning, shepherded it through tough times, and has been a constant support. Brett's implacable focus on *your* experience with the *Head First* books is an inspiration. He is the man with the plan.

Karen Shaner provided logistical support and a good bit of cheer on some cold Cambridge mornings. **Brittany Smith** contributed some cool graphic elements that we used over and over.

Really smart people whose ideas are remixed in this book:

While many of big ideas taught in this book are unconventional for books with "data analysis" in the title, few of them are uniquely my own. I drew heavily from the writings of these intellectual superstars: Dietrich Doerner, Gerd Gigerenzer, Richards Heuer, and Edward Tufte. Read them all! The idea of the anti-resume comes from Nassim Taleb's *The Black Swan* (if there's a Volume 2, expect to see more of his ideas). **Richards Heuer** kindly corresponded with me about the book and gave me a number of useful ideas.

Friends and colleagues:

Lou Barr's intellectual, moral, logistical, and aesthetic support of this book is much appreciated. Vezen Wu taught me the relational model. Aron Edidin sponsored an awesome tutorial for me on intelligence analysis when I was an undergraduate. My poker group—Paul, Brewster, Matt, Jon, and Jason—has given me an expensive education in the balance of heuristic and optimizing decision frameworks.

People I couldn't live without:

The **technical review team** did a brilliant job, caught loads of errors, made a bunch of good suggestions, and were tremendously supportive.

As I wrote this book, I leaned heavily on my friend **Blair Christian**, who is a statistician and deep thinker. His influence can be found on every page. Thank you for everything, Blair.

My family, **Michael Sr.**, **Elizabeth**, **Sara**, **Gary**, and **Marie**, have been tremendously supportive. Above all, I appreciate the steadfast support of my wife **Julia**, who means everything. Thank you all!

Brian Sawyer

Brett McLaughlin

Blair and Niko Christian

Safari® Books Online

When you see a Safari® icon on the cover of your favorite technology book that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current information. Try it for free at http://my.safaribooksonline.com/?portal=oreilly.

1 introduction to data analysis

Break it down *

Data is everywhere.

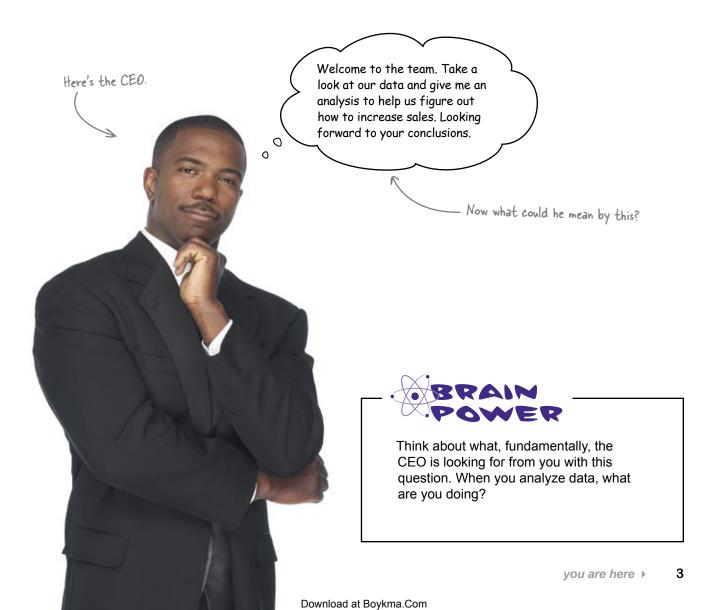
Nowadays, everyone has to deal with mounds of data, whether they call themselves "data analysts" or not. But people who possess a toolbox of data analysis skills have a **massive edge** on everyone else, because they understand what to **do** with all that stuff. They know how to translate raw numbers into intelligence that **drives real-world action**. They know how to **break down and structure** complex problems and data sets to get right to the heart of the problems in their business.

Acme Cosmetics needs your help

It's your first day on the job as a data analyst, and you were just sent this sales data from the CEO to review. The data describes sales of Acme's flagship moisturizer, MoisturePlus.

What has been happening during the last six months with sales? How do their gross sales figures compare to their target sales figures? -September October November December January February Gross sales \$5,280,000 \$5,501,000 \$5,469,000 \$5,480,000 \$5,533,000 \$5,554,000 Target sales \$5,280,000 \$5,500,000 \$5,729,000 \$5,968,000 \$6,217,000 \$6,476,000 Ad costs \$1,056,000 \$950,400 \$739,200 \$528,000 \$316,800 \$316,800 Social network costs \$0 \$105,600 \$316,800 \$528,000 \$739,200 \$739,200 Unit prices (per oz.) \$2.00 \$2.00 \$2.00 \$1.90 \$1.90 \$1.90 What do you think is going Do you see a pattern in Acme's expenses? on with these unit prices? Why are they going down?

Take a look at the data. It's fine not to know everything—just **slow down** and take a look.


What do you see? How much does the table tell you about Acme's business? About Acme's MoisturePlus moisturizer?

Good data analysts always want to see the data.

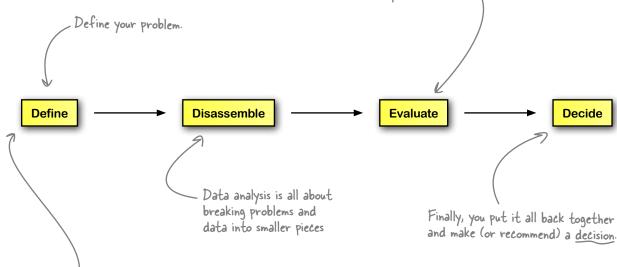
The CEO wants data analysis to help increase sales

He wants you to "give him an analysis."

It's kind of a *vague* request, isn't it? It sounds simple, but will your job be that straightforward? Sure, he wants more sales. Sure, he thinks something in the data will help accomplish that goal. But what, and how?

Pata analysis is careful thinking about evidence

The expression "data analysis" covers a lot of different activities and a lot of different skills. If someone tells you that she's a data analyst, you still won't know much about what *specifically* she knows or does.


You might bet that she knows Excel, but that's about it!

Here's the meat of the analysis, where

you draw your conclusions about what

you've learned in the first two steps.

But all good analysts, regardless of their skills or goals, go through this **same basic process** during the course of their work, always using empirical evidence to think carefully about problems.

In every chapter of this book, you'll go through these steps over and over again, and they'll become second nature really quickly.

Knowing your problem is the very first step.

Ultimately, all data analysis is designed to lead to **better decisions**, and you're about to learn how to make better decisions by gleaning insights from a sea of data.

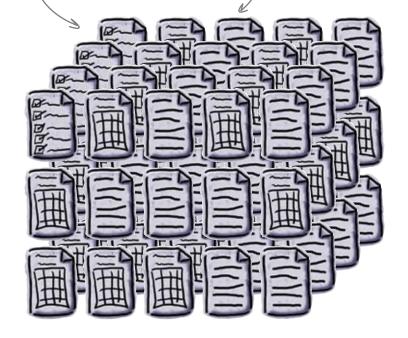
Pefine the problem

Doing data analysis without **explicitly** defining your problem or goal is like heading out on a road trip without having decided on a destination.

Sure, you might come across some interesting sights, and sometimes you might *want* to wander around in the hopes you'll stumble on something cool, but **who's to say you'll find anything?**

Road trip with a destination.

Mission accomplished!


See the similarity?

Ever seen an "analytical report" that's a **million pages long**, with tons and tons of charts and diagrams?

Here's a gigantic analytical report.

Every once in a while, an analyst really does need a ream of paper or an hourlong slide show to make a point. But in this sort of case, the analyst often **hasn't focused** enough on his problem and is pelting you with information as a way of ducking his obligation to **solve a problem** and **recommend a decision**.

Sometimes, the situation is even worse: the problem isn't defined at all and the analyst doesn't want you to realize that he's just wandering around in the data.

How do you define your problem?

Your client will help you define your problem

He is the person your analysis is meant to serve. Your client might be your boss, your company's CEO, or even yourself.

Your client is the person who will make decisions on the basis of your analysis. You need to get as much information as you can from him to **define your problem**.

The CEO here wants more sales. But that's only the beginning of an answer. You need to understand more specifically what he means in order to craft an analysis that solves the problem.

There's a bonus in it for you if you can figure 0 out how to increase MoisturePlus sales. This is your client, the any you're working for It's a really good idea to know your client as well as you can. CEO of Acme Cosmetics focused or indecisive The better you understand your client, the more likely your analysis will be able to help. **Evaluate** Decide

Your client might be:

- well or badly informed about his data
- well or badly informed about his problems or goals
- well or badly informed about his business
- clear or vague
- intuitive or analytic

Keep an eye at the bottom of the page during this chapter for these cues, which show you where you are.

Define

Disassemble

Dumb Questions

I always like wandering around in data. Do you mean that I need to have some specific goal in mind before I even look at my data?

A: You don't need to have a problem in mind just to look at data. But keep in mind that *looking* by itself is not yet data analysis. Data analysis is all about identifying problems and then solving them.

I've heard about "exploratory data analysis," where you explore the data for ideas you might want to evaluate further. There's no problem definition in that sort of data analysis!

A: Sure there is. Your problem in exploratory data analysis is to find hypotheses worth testing. That's totally a concrete problem to solve.

Fine. Tell me more about these clients who aren't well informed about their problems. Does that kind of person even need a data analyst?

A: Of course!

Sounds to me like that kind of person needs professional help.

A: Actually, good data analysts help their clients think through their problem; they don't just wait around for their clients to tell them what to do. Your clients will really appreciate it if you can show them that they have problems they didn't even know about.

Q: That sounds silly. Who wants more problems?

People who hire data analysts recognize that people with analytical skills have the ability to improve their businesses. Some people see problems as opportunities, and data analysts who show their clients how to exploit opportunity give them a competitive advantage.

_ 6	Sharpen your pencil	
		The general problem is that we need to increase sales. What questions would you ask the CEO to understand better what he means specifically? List five.
1		
2		
3		
4		
5		

Acme's CEO has some feedback for you

Your questions might be different.

This email just came through in response to your questions. Lots of intelligence here...

Here are some sample questions to get the CEO to define your analytical goals.

Always ask "how much." Make your goals and beliefs quantitative.

Anticipate what your client thinks about He's definitely going to be concerned with competitors.

See something curious in the numbers?
Ask about it!

From: CEO, Acme Cosmetics

To: Head First

Subject: Re: Define the problem

By how much do you want to increase sales?

I need to get it back in line with our target sales, which you can see on the table. All our budgeting is built around those targets, and we'll be in trouble if we miss them.

How do you think we'll do it?

Well, that's your job to figure out. But the strategy is going to involve getting people to buy more, and by "people" I mean tween girls (age 11–15). You're going to get sales up with marketing of some sort or another. You're the data person. Figure it out!

How much of a sales increase do you think is feasible? Are the target sales figures reasonable?

These tween girls have deep pockets. Babysitting money, parents, and so on. I don't think there's any limit to what we can make off of selling them MoisturePlus.

→ How are our competitors' sales?

I don't have any hard numbers, but my impression is that they are going to leave us in the dust. I'd say they're 50–100 percent ahead of us in terms of gross moisturizer revenue.

What's the deal with the ads and the social networking marketing budget?

We're trying something new. The total budget is 20 percent of our first month's revenue. All of that used to go to ads, but we're shifting it over to social networking. I shudder to think what'd be happening if we'd kept ads at the same level.

Break the problem and data into smaller pieces

The next step in data analysis is to take what you've learned about your problem from your client, along with your data, and break that information down into the level of **granularity** that will best serve your analysis.

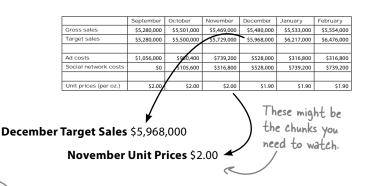
Divide the problem into smaller problems

You need to divide your problem into **manageable**, **solvable chunks**. Often, your problem will be **vague**, like this:

"How do we increase sales?"

You can't answer the big problem directly. But by answering the smaller problems, which you've **analyzed** out of the big problem, you can get your answer to the big one.

"What do our best customers want from us?"
"What promotions are most likely to work?"
"How is our advertising doing?"


Answer the smaller problems to solve the bigger one.

Divide the data into smaller chunks

Same deal with the data. People aren't going to present you the precise quantitative answers you need; you'll need to extract important elements on your own.

If the data you receive is a **summary**, like what you've received from Acme, you'll want to know which elements are most important to you.

If your data comes in a **raw** form, you'll want to summarize the elements to make that data more useful.

More on these buzzwords in a moment!

Let's give disassembling a shot...

Now take another look at what you know

Let's start with the data. Here you have a summary of Acme's sales data, and the best way to start trying to isolate the most important elements of it is to find strong **comparisons**.

Break down your summary data by searching for interesting comparisons.

How do the gross and target sales figures compare to each other for October?

How do January's gross sales compare to February's?

September October November December January Fe						
Gross sales	\$5,280,000	\$5,501,000	\$5,469,000	\$5,480,000	\$5,533,000	\$5,554,000
Target sales	\$5,280,000	\$5,500,000	\$5,729,000	\$5,968,000	\$6,217,000	\$6,476,000
Ad costs	\$1,056,000	\$950,400	\$739,200	\$528,000	\$316,800	\$316,800
Social network costs	\$0	\$105,600	\$316,800	\$528,000	\$739,200	\$739,200
Unit prices (per oz.)	\$2.00	\$2.00	\$2.00	\$1.90	\$1.90	\$1.90

· How are ad and social network costs changing relative to each other over time?

Does the decrease in unit prices coincide with any change in gross sales?

Making good comparisons is at the core of data analysis, and you'll be doing it throughout this book.

In this case, you want to **build a conception in your mind** of how Acme's MoisturePlus business works by comparing their summary statistics.

 You've defined the problem: *figure out how to increase sales*. But that problem tells you very little about *how* you're expected to do it, so you elicited a lot of useful commentary from the CEO.

This commentary provides an important **baseline set of assumptions** about how the cosmetics business works. Hopefully, the CEO is right about those assumptions, because they will be the **backbone** of your analysis! What *are* the most important points that the CEO makes?

This commentary is itself a kind of data. Which parts of it are most important?

there's the "how" question.

What's most useful?

From: CEO, Acme Cosmetics To: Head First

Subject: Re: Define the problem

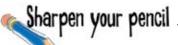
By how much do you want to increase sales?

I need to get it back in line with our target sales, which you can see on the table. All our budgeting is built around those targets, and we'll be in trouble if we miss them.

How do you think we'll do it?

Well, that's your job to figure out. But the strategy is going to involve getting people to buy more, and by "people" I mean tween girls (age 11–15). You're going to get sales up with marketing of some sort or another. You're the data person. Figure it out!

How much of a sales increase do you think is feasible? Are the target sales figures reasonable?


These tween girls have deep pockets. Babysitting money, parents, and so on. I don't think there's any limit to what we can make off of selling them MoisturePlus.

How are our competitors' sales?

I don't have any hard numbers, but my impression is that they are going to leave us in the dust. I'd say they're 50–100 percent ahead of us in terms of gross moisturizer revenue.

What's the deal with the ads and the social networking marketing budget?

We're trying something new. The total budget is 20 percent of our first month's revenue. All of that used to go to ads, but we're shifting it over to social networking. I shudder to think what'd be happening if we'd kept ads at the same level.

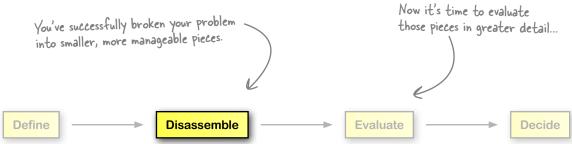
Summarize what your client believes and your thoughts on the data you've received to do the analysis. *Analyze* the above email and your data into smaller pieces that describe your situation.

Your client's beliefs.

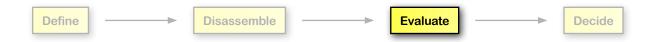
Your thoughts on the data.

1

(3)


3

4



Evaluate the pieces

Here comes the fun part. You know what you need to figure out, and you know what chunks of data will enable you to do it. Now, take a close, focused look at the pieces and form your own judgements about them.

Just as it was with disassembly, the key to evaluating the pieces you have isolated is **comparison**.

What do you see when you compare these elements to each other?

Observations about the problem

MoisturePlus customers are tween girls (where tweens are people aged 11–15). They're basically the only customer group.

Acme is trying out reallocating expenses from advertisements to social networking, but so far, the success of the initiative is unknown.

We see no limit to potential sales growth among tween girls.

Acme's competitors are extremely dangerous.

Pick any two elements and read them next to each other.

What do you see?

Sales are slightly up in February compared to September, but kind of flat.

Sales are way off their targets.

Cutting ad expenses may have hurt Acme's ability to keep pace with sales targets.

Cutting the prices does not seem to have helped sales keep pace with targets.

You have almost all the right pieces, but one important piece is missing...

Analysis begins when you insert yourself

Inserting yourself into your analysis means **making** your own assumptions explicit and betting your credibility on your conclusions.

Whether you're building complex models or making simple decisions, data analysis is all about you: your beliefs, your judgement, your credibility. Your prospects for success are much better if you are an explicit part of your analysis.

Insert yourself

Good for you

You'll know what to look for in the data.

You'll avoid overreaching in your conclusions.

You'll be responsible for the success of your work.

Good for your clients

Your client will respect your judgments more.

Your client will understand the limitations of your conclusions.

Don't insert yourself

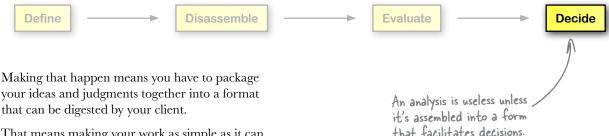
Bad for you

You'll lose track of how your baseline assumptions affect your conclusions.

You'll be a wimp who avoids responsibility!

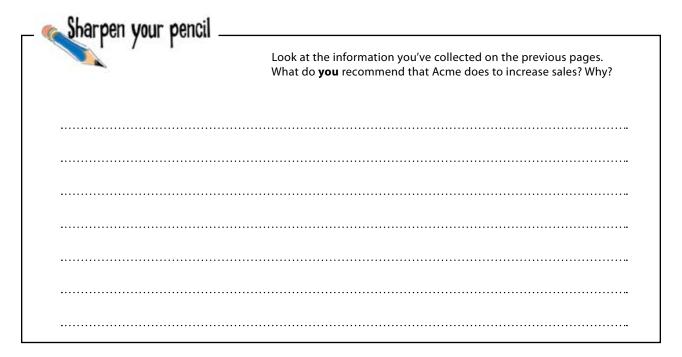
Bad for your client

Your client won't trust your analysis, because he won't know your motives and incentives.


Your client might get a false sense of "objectivity" or detached rationality.

As you craft your final report, be sure to refer to yourself, so that your client knows where your conclusions are coming from.

Yikes! You don't want to run into these problems.


Make a recommendation

As a data analyst, your job is to empower yourself and your client to make better **decisions**, using insights gleaned from carefully studying your evaluation of the data.

That means making your work as simple as it can be, but not simpler! It's your job to **make sure your voice is heard** and that people make good decisions on the basis of what you have to say.

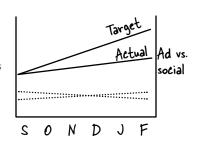
The report you present to your client needs to be focused on making yourself understood and encouraging intelligent, data-based decision making.

Your report is ready

Acme Cosmetics Analytical Report

Context

This is the stuff we got from the CEO at the beginning.


Here's the meat

of your analysis.

MoisturePlus customers are tween girls (where tweens are people aged 11–15). They're basically the only customer group. Acme is trying out reallocating expenses from advertisements to social networking, but so far, the success of the initiative is unknown. We see no limit to potential sales growth among tween girls. Acme's competitors are extremely dangerous.

Interpretation of data

Sales are slightly up in February compared to September, but kind of flat. Sales are way off their targets. Cutting ad expenses may have hurt Acme's ability to keep pace with sales targets. Cutting the prices does not seem to have helped sales keep pace with targets.

It's a good idea to state your and your clients' assumptions in your report.

A simple graphic to illustrate your conclusion.

Your conclusion might be

different.

Recommendation

It might be that the decline in sales relative to the target is linked to the decline in advertising relative to past advertising expenses. We have no good evidence to believe that social networking has been as successful as we had hoped. I will return advertising to September levels to see if the tween girls respond. Advertising to tween girls is the way to get gross sales back in line with targets.

What will the CEO think?

Define Disassemble Evaluate Decide

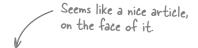
The CEO likes your work

Excellent work. I'm totally persuaded. I'll execute the order for more ads at once. I can't wait to see what happens!

Your report is concise, professional, and direct.

It speaks to the CEO's needs in a way that's even clearer than his own way of describing them.

You looked at the data, got greater clarity from the CEO, compared his beliefs to your own interpretation of his data, and recommended a decision.


Nice work!

How will your recommendation affect Acme's business?

Will Acme's sales increase?

An article just came across the wire

Pataville Business Paily

MoisturePlus achieves complete market saturation among tween girls

Our very own cosmetics industry analysts report that the tween girl moisturizer market completely dominated by Acme Cosmetics's flagship product, MoisturePlus. According to the DBD's survey, 95 percent of tween girls report "Very Frequent" usage of MoisturePlus, typically twice a day or more.

The Acme CEO surprised when our reporter told him of our findings. "We committed to providing our tween customers the most luxurious cosmetic experience possible at justaccessible prices," he said. "I'm delighted to hear that MoisturePlus has achieved so much success with them. Hopefully, our analytical department will be able to deliver this information to me in the future, rather than the press."

Acme's only viable competitor in this market

space, Competition Cosmetics, responded to our reporter's inquiry saying, "We have basically given up on marketing to tween girls. The customers that we recruit for viral marketing are made fun of by their friends for allegedly using a cheap, inferior product. The MoisturePlus brand is so powerful that it's a waste of our marketing dollars to compete. With any luck, the MoisturePlus brand will take a hit if something happens like their celebrity endorsement getting caught on video having...

What does this mean for your analysis?

On the face of it, this sounds good for Acme. But if the market's saturated, more ads to tween girls probably won't do much good. You're lucky I got this call. I canceled the tween girl ad campaign. Now come back to me with a plan that works.

It's hard to imagine the tween girl campaign would have worked. If the overwhelming majority of them are using MoisturePlus two or more times a day, what opportunity is there for increasing sales?

You'll need to find other opportunities for sales growth. But first, you need to get a handle on what just happened to your analysis.

Somewhere along the way, you picked up some **bad or incomplete information** that left you blind to these facts about tween girls. What was that information?

You let the CEO's beliefs take you down the wrong path

Here's what the CEO said about how MoisturePlus sales works:

The CEO's beliefs about MoisturePlus

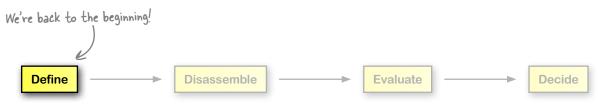
MoisturePlus customers are tween girls (where tweens are people aged 11–15). They're basically the only customer group.

Acme is trying out reallocating expenses from advertisements to social entworking, but so far, the success of the initiative is unknown.

We see no limit to potential sales growth among tween girls.

Acme's competitors are extremely dangerous.

This is a mental model...


Take a look at how these beliefs fit with the data. Do the two agree or conflict? Do they describe different things?

	September	October	November	December	January	February
Gross sales	\$5,280,000	\$5,501,000	\$5,469,000	\$5,480,000	\$5,533,000	\$5,554,000
Target sales	\$5,280,000	\$5,500,000	\$5,729,000	\$5,968,000	\$6,217,000	\$6,476,000
Ad costs	\$1,056,000	\$950,400	\$739,200	\$528,000	\$316,800	\$316,800
Social network costs	\$0	\$105,600	\$316,800	\$528,000	\$739,200	\$739,200
Unit prices (per oz.)	\$2.00	\$2.00	\$2.00	\$1.90	\$1.90	\$1.90

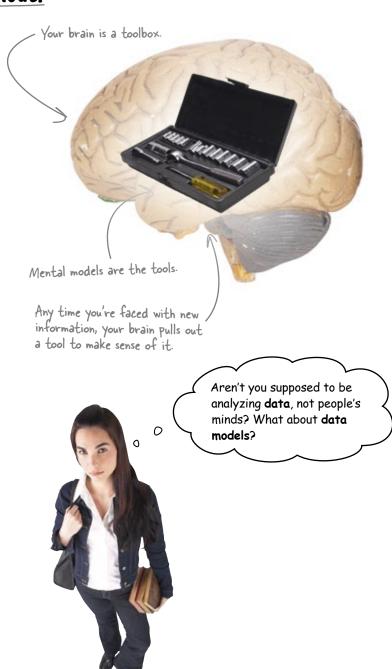
The data doesn't say anything about tween

girls. He assumes that tween girls are the only buyers and that tween girls have the ability to purchase more MoisturePlus.

In light of the news article, you might want to reassess these beliefs.

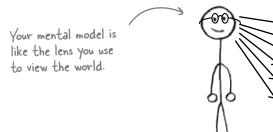
Your assumptions and beliefs about the world are your mental model

And in this case, it's problematic. If the newspaper report is true, the CEO's beliefs about tween girls are wrong. Those beliefs are the model you've been using to interpret the data.


The world is complicated, so we use **mental models** to make sense of it. Your brain is like a toolbox, and any time your brain gets new information, it picks a tool to help interpret that information.

Mental models can be hard-wired, innate cognitive abilities, or they can be theories that you learn. Either way, they have a **big impact** on how you interpret data.

Sometimes mental models are a big help, and sometimes they cause problems. In this book, you'll get a crash course on how to use them to your advantage.


What's most important for now is that you always make them explicit and give them **the same serious and careful treatment** that you give data.

Always make your mental models as explicit as possible.

Your statistical model depends on your mental model

Mental models determine what you see. They're your lens for viewing reality.

You can't see *everything*, so your brain has to be selective in what it chooses to focus your attention on. So your mental model largely **determines what you see**.

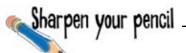
One mental model will draw your attention
to some features of the world...

The world looks one way.

"...and a different mental model will draw your attention to other features."

The world looks

If you're **aware** of your mental model, you're more likely to see what's important and develop the most relevant and useful statistical models.


Your statistical model **depends** on your mental model. If you use the wrong mental model, your analysis fails before it even begins.

You'd better get the mental model right!

slightly different!

You look at the world.

Let's take another look at the data and think about what other mental models would fit the data.

	September	October	November	December	January	February
Gross sales	\$5,280,000	\$5,501,000	\$5,469,000	\$5,480,000	\$5,533,000	\$5,554,000
Target sales	\$5,280,000	\$5,500,000	\$5,729,000	\$5,968,000	\$6,217,000	\$6,476,000
Ad costs	\$1,056,000	\$950,400	\$739,200	\$528,000	\$316,800	\$316,800
Social network costs	\$0	\$105,600	\$316,800	\$528,000	\$739,200	\$739,200
Unit prices (per oz.)	\$2.00	\$2.00	\$2.00	\$1.90	\$1.90	\$1.90

1	List some assumptions that would be true if MoisturePlus is actually the preferred lotion for tweens.	Use your creativity!	
			•••••
2	List some assumptions that would be true if MoisturePlus was in serious danger of losing customers to their competition.		
			•••••

Sharpen your pencil Solution

You just looked at your summary data with a new perspective: how would *different* mental models fit?

	September	October	November	December	January	February
Gross sales	\$5,280,000	\$5,501,000	\$5,469,000	\$5,480,000	\$5,533,000	\$5,554,000
Target sales	\$5,280,000	\$5,500,000	\$5,729,000	\$5,968,000	\$6,217,000	\$6,476,000
Ad costs	\$1,056,000	\$950,400	\$739,200	\$528,000	\$316,800	\$316,800
Social network costs	\$0	\$105,600	\$316,800	\$528,000	\$739,200	\$739,200
Unit prices (per oz.)	\$2.00	\$2.00	\$2.00	\$1.90	\$1.90	\$1.90

List some assumptions that would be true if MoisturePlus is actually the preferred lotion for tweens.

Tween girls spend almost all their moisturizer dollars on MoisturePlus.

Here's a happy world.

Acme needs to find new markets for MoisturePlus to increase sales.

There are no meaningful competitors to MoisturePlus. It's by far the best product.

Social networks are the most cost-effective way to sell to people nowadays.

Price increases on MoisturePlus would reduce market share.

2

List some assumptions that would be true if MoisturePlus was in serious danger of losing customers to their competition.

Tween girls shifting to new moisturizer product, and Acme needs to fight back.

7

This is a challenge.

MoisturePlus is considered "uncool" and "just for dorks."

The "dry" skin look is becoming popular among young people.

Social network marketing is a black hole, and we need to go back to ads.

Tween girls are willing to spend much more money on moisturizer.

It's not unusual for your client to have the completely wrong mental model. In fact, it's really common for people to ignore what might be the most important part of the mental model...

Define

Disassemble

Evaluate

Decide

Mental models should always include what you don't know

Always specify **uncertainty**. If you're explicit about uncertainty, you'll be on the lookout for ways to use data to fill gaps in your knowledge, and you will make better recommendations.

Thinking about uncertainties and blind spots can be uncomfortable, but the payoff is huge. This "anti-resume" talks about what someone **doesn't** know rather than what they do know. If you want to hire a dancer, say, the dances they don't know might be more interesting to you than the dances they do know.

When you hire people, you often find out what they don't know only when it's too late.

It's the same deal with data analysis. Being clear about your knowledge gaps is essential.

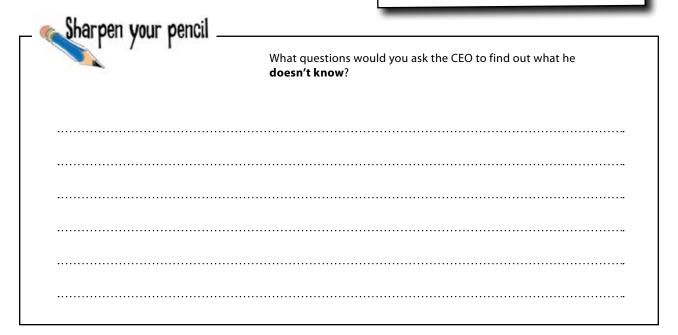
Specify uncertainty up front, and you won't get nasty surprises later on.

Head First Anti-Resume

Experiences I haven't had:

Being arrested Eating crawfish Riding a unicycle Shoveling snow

Things I don't know:


The first fifty digits of Pi How many mobile minutes I used today The meaning of life

Things I don't know how to do:

Make a toast in Urdu Dance merengue Shred on the guitar

Books I haven't read:

James Joyce's Ulysses
The Da Vinci Code

The CEO tells you what he doesn't know

From: CEO, Acme Cosmetics

To: Head First

Subject: Re: Managing uncertainty

Where would you say are the biggest gaps in your knowledge about MoisturePlus sales?

Well that's an interesting question. I'd always thought we really understood how customers felt about our product. But since we don't sell direct to consumers, we really don't know what happens after we send our product to our resellers. So, yeah, we don't really know what happens once MoisturePlus leaves the warehouse.

How confident are you that advertising has increased sales in the past?

Well, like they always say, half of it works, half of it doesn't, and you never know which half is which. But it's pretty clear that the MoisturePlus brand is most of what our customers are buying, because MoisturePlus isn't terribly different from other moisturizers, so ads are key to establishing the brand.

Who else might buy the product besides tween girls?

I just have no idea. No clue. Because the product is so brand-driven we only think about tween girls. We've never reached out to any other consumer group.

Are there any other lingering uncertainties that I should know about?

Sure, lots. You've scared the heck out of me. I don't feel like I know anything about my product any more. Your data analysis makes me think I know less than I ever knew.

It's fine to get the client to speculate.

Not a lot of certainty here on how well advertising works.

This is a big blind spot!

Who else might be buying MoisturePlus?

Are there other buyers besides tween girls?

Dumb Questions

That's a funny thing the CEO said at the end: data analysis makes you feel like you know *less*. He's wrong about that, right?

A: It depends on how you look at it.

Nowadays, more and more problems can be solved by using the techniques of data analysis. These are problems that, in the past, people would solve using gut instincts, flying by the seat of their pants.

So mental models feel more and more flimsy compared to how they felt in the past?

A: A lot of what mental models do is help you fill in the gaps of what you don't know. The good news is that the tools of data analysis empower you to fill those gaps in a systematic and confidence-inspiring way. So the point of the exercise of specifying your uncertainty in great detail is to help you see the blind spots that require hard-nosed empirical data work.

But won't I always need to use mental models to fill in the gaps of knowledge in how I understand the world?

A: Absolutely...

Because even if I get a good understanding of how things work right now, ten minutes from now the world will be different.

A: That's exactly right. You can't know everything, and the world's constantly changing. That's why specifying your problem rigorously and managing the uncertainties in your mental model is so important. You have only so much time and resources to devote to solving your analytical problems, so answering these questions will help you do it efficiently and effectively.

Does stuff you learn from your statistical models make it into your mental models?

Definitely. The facts and phenomena you discover in today's research often become the assumptions that take you into tomorrow's research. Think of it this way: you'll inevitably draw wrong conclusions from your statistical models. Nobody's perfect. And when those conclusions become part of your mental model, you want to keep them explicit, so you can recognize a situation where you need to double back and change them.

So mental models are things that you can test empirically?

A: Yes, and you should test them. You can't test everything, but everything in your model should be testable.

Q: How do you change your mental model?

A: You're about to find out...

The CEO ordered more data to help you look for market segments besides tween girls. Let's take a look.

Acme just sent you a huge list of raw data

When you get new data, and you haven't done anything to change it yet, it's considered **raw** data. You will almost always need to manipulate data you get from someone else in order to get it into a useful form for the number crunching you want to do.

Just be sure to **save your originals**. And keep them separate from any data manipulation you do. Even the best analysts make mistakes, and you always need to be able to compare your work to the raw data.

This is a lot of stuff...
maybe more than you need.

Date Vendor		(units)	ZIP	Cost
9/1/08	Sassy Girl Cosmetics	5253	20817	\$75,643
9/3/08	Sassy Girl Cosmetics	6148	20817	\$88,531
9/4/08	Prissy Princess	8931	20012	\$128,606
9/14/08	Sassy Girl Cosmetics	2031	20817	\$29,246
9/14/08	Prissy Princess	8029	20012	\$115,618
9/15/08	General American Wholesalers	3754	20012	\$54,058
9/20/08	Sassy Girl Cosmetics	7039	20817	\$101,362
9/21/08	Prissy Princess	7478	20012	\$107,683
9/25/08	General American Wholesalers	2646	20012	\$38,102
9/26/08	Sassy Girl Cosmetics	6361	20817	\$91,598
10/4/08	Prissy Princess	9481	20012	\$136,526
10/7/08	General American Wholesalers	8598	20012	\$123,811
10/9/08	Sassy Girl Cosmetics	6333	20817	\$91,195
10/12/08	General American Wholesalers	4813	20012	\$69,307
10/15/08	Prissy Princess	1550	20012	\$22,320
10/20/08	Sassy Girl Cosmetics	3230	20817	\$46,512
10/25/08	Sassy Girl Cosmetics	2064	20817	\$29,722
10/27/08	General American Wholesalers	8298	20012	\$119,491
10/28/08	Prissy Princess	8300	20012	\$119,520
11/3/08	General American Wholesalers	6791	20012	\$97,790
11/4/08	Prissy Princess	3775	20012	\$54,360
11/10/08	Sassy Girl Cosmetics	8320	20817	\$119,808
11/10/08	Sassy Girl Cosmetics	6160	20817	\$88,704
11/10/08	General American Wholesalers	1894	20012	\$27,274
11/15/08	Prissy Princess	1697	20012	\$24,437
11/24/08	Prissy Princess	4825	20012	\$69,480
11/28/08	Sassy Girl Cosmetics	6188	20817	\$89,107
11/28/08	General American Wholesalers	4157	20012	\$59,861
12/3/08	Sassy Girl Cosmetics	6841	20817	\$98,510
12/4/08	Prissy Princess	7483	20012	\$107,755
12/6/08	General American Wholesalers	1462	20012	\$21,053
12/11/08	General American Wholesalers	8680	20012	\$124,992
12/14/08	Sassy Girl Cosmetics	3221	20817	\$46,382
12/14/08	Prissy Princess	6257	20012	\$90,101
12/24/08	General American Wholesalers	4504	20012	\$64,858
12/25/08	Prissy Princess	6157	20012	\$88,661
12/28/08	Sassy Girl Cosmetics	5943	20817	\$85,579
1/7/09	Sassy Girl Cosmetics	4415	20817	\$63,576
1/10/09	Prissy Princess	2726	20012	\$39,254
1/10/09	General American Wholesalers	4937	20012	\$71,093
1/15/09	Sassy Girl Cosmetics	9602	20817	\$138,269
1/18/09	General American Wholesalers	7025	20012	\$101,160
1/20/09	Prissy Princess	4726	20012	\$68,054

That's sooo much data! What do I do? Where do I begin?

A lot of data is usually a good thing.

Just stay focused on what you're trying to accomplish with the data. If you lose track of your goals and assumptions, it's easy to get "lost"

messing around with a large data set. But good data analysis is all about keeping focused on what you want to learn about the data.

Define Disassemble Evaluate Decide

Take a close look at this data and think about the **CEO's mental model**. Does this data fit with the idea that the customers are all tween girls, or might it suggest other customers?

9/3/08 Sasy Girl Cosmetics 6148 20817 \$88,531 8/4/08 Prissy Princess 8931 20012 \$13,80,60 9/14/08 Sasy Girl Cosmetics 2031 20817 \$59,244 9/14/08 Prissy Princess 8020 20012 \$115,618 9/15/08 General American Wholesalers 3754 20012 \$54,058 9/15/08 General American Wholesalers 3754 20012 \$10,058 9/21/08 Prissy Princess 7478 20012 \$10,058 9/21/08 General American Wholesalers 2046 20017 \$101,366 9/21/08 General American Wholesalers 40,000 \$13,000 10/4/09 Prissy Princess 9481 20012 \$130,058 10/4/09 General American Wholesalers 40,000 \$13,000 10/5/08 Sasy Girl Cosmetics 6333 20817 \$91,191 10/12/08 General American Wholesalers 40,000 \$13,000 10/5/08 Sasy Girl Cosmetics 6333 20817 \$91,191 10/12/08 General American Wholesalers 40,000 \$13,000 10/5/09 Prissy Princess 3230 20012 \$19,000 10/5/09 Prissy Princess 3230 20012 \$19,000 10/5/09 General American Wholesalers 6296 20012 \$119,000 10/5/09 General American Wholesalers 6296 20012 \$119,000 11/16/09 Prissy Princess 8300 20012 \$119,000 11/16/09 General American Wholesalers 6296 20012 \$119,000 11/16/09 Sasy Girl Cosmetics 820 20012 \$119,000 11/16/09 General American Wholesalers 820 20012 \$110,000 11/16/09 General American Wholesalers 820 20012 \$110,000 11/16/09 General American Wholesalers 820 20012 \$110,000 11/16/09 Sasy Girl Cosmetics 840 20012 \$110,000 11/16/09 Sasy Girl Cosmetics 840 200	might it suggest other customers?					
9/3/08 Sasy Girl Cosmetics 6148 20817 \$88,531 9/409 Prissy Princess 8331 20012 \$13,806 9 91408 Sasy Girl Cosmetics 2031 2015 \$19,806 91408 Prissy Princess 8029 20012 \$115,618 91760 General American Wholesalers 3754 20012 \$54,805 91760 General American Wholesalers 400 2012 \$110,618 91760 General American Wholesalers 400 2012 \$101,618 91760 General American Wholesalers 400 2012 \$107,618 91760 General American Wholesalers 400 2012 \$107,618 91760 General American Wholesalers 400 2012 \$130,818 100 2012 \$107,618 91760 General American Wholesalers 400 2012 \$130,818 100 2012 \$107,618 91760 General American Wholesalers 400 2012 \$130,818 100 2012 \$107,618 91760 General American Wholesalers 400 2012 \$130,818 100 2012 \$107,618 91760 General American Wholesalers 400 2012 \$109,800 100 2012 \$100,800 Prissy Princess 400 2012 \$100,800 91760 General American Wholesalers 400 2012 \$119,800 91760		Date	Vendor			Cost
9/4/08 Prissy Princess 8931 20012 \$128,600 914/08 Prissy Princess 9029 20012 \$115,616 914/08 Prissy Princess 9029 20012 \$1515,616 915/08 General American Wholesalers 3754 20012 \$540,850 92/08 Seasy Giff Cosmetics 7039 2017 \$101,866 912/08 Prissy Princess 7478 20012 \$107,688 912/108 Prissy Princess 9481 20012 \$130,688 912/108 Prissy Princess 9481 20012 \$130,688 912/108 Seasy Giff Cosmetics 6361 20817 \$91,998 104/048 Prissy Princess 9481 20012 \$130,628 109/26/08 Seasy Giff Cosmetics 6361 20817 \$91,998 109/26/08 Seasy Giff Cosmetics 6361 20817 \$91,998 109/26/08 Seasy Giff Cosmetics 6363 20217 \$133,818 109/26/38 Seasy Giff Cosmetics 6363 20217 \$91,199 109/26/38 Seasy Giff Cosmetics 6363 20217 \$91,199 109/26/38 Seasy Giff Cosmetics 9481 20012 \$132,818 109/26/38 Seasy Giff Cosmetics 9481 20012 \$132,818 109/26/38 Seasy Giff Cosmetics 9481 20012 \$22,223 109/26/38 Seasy Giff Cosmetics 9481 20012 \$23,233 109/26/38 Seasy Giff Cosmetics 9482 20012 \$119,208 109/26/38 General American Wholesalers 6791 20011 \$29,793 11/26/38 General American Wholesalers 6791 20011 \$29,793 11/26/38 General American Wholesalers 6791 20011 \$29,793 11/26/38 General American Wholesalers 1694 20012 \$22,223 11/26/38 General American Wholesalers 1694 20012 \$22,223 11/26/38 General American Wholesalers 1694 20012 \$22,235 11/26/38 General American Wholesalers 1694 20012 \$22,235 11/26/38 General American Wholesalers 1695 20012 \$310,235 11/26/38 Seasy Giff Cosmetics 6841 20012 \$20012 \$23,433 11/26/38 General American Wholesalers 1694 20012 \$22,055 11/26/38 General American Wholesalers 1694 20012 \$22,055 11/26/38 General American Wholesalers 1694 20012 \$22,055 11/26/38 Seasy Giff Cosmetics 9433 20012 \$114,267 11/26/38 Seasy Giff Cosmetics 9433 20012 \$114,267 11/26/38 Seasy Giff Cosmetics 9433 20017 \$36,357 11/26/38 Seasy Giff Cosmetics 9433 20017 \$36,357 11/2		9/1/08	Sassy Girl Cosmetics	5253	20817	\$75,643
9/14/08 Prissy Princess 9/14/08 Prissy Princess 9/14/08 Prissy Princess 9/14/08 Prissy Princess 9/12/08 Sasy Girl Cosmetics 9/12/08 Sasy Girl Cosmetics 9/12/08 Prissy Princess 9/12/08 Prissy Princess 9/12/08 Sasy Girl Cosmetics 9/12/08 Sasy Girl Cosmetic		9/3/08	Sassy Girl Cosmetics	6148	20817	\$88,531
9/14/08 Prissy Princess 8029 20012 \$115,615 9/15/08 General American Wholesalers 3734 20012 \$543,656 9/20/08 Sassy Girl Cosmetics 7039 20017 \$101,366 9/21/08 Prissy Princess 7478 20012 \$107,685 9/22/08 Prissy Princess 7478 20012 \$107,685 9/22/08 Prissy Princess 7478 20012 \$107,685 9/22/08 Sassy Girl Cosmetics 6361 20017 \$105,265 10/4/08 Prissy Princess 9481 20012 \$136,256 10/4/08 Prissy Princess 9481 20012 \$136,256 10/4/08 Prissy Princess 9481 20012 \$136,256 10/7/08 General American Wholesalers 8538 20012 \$123,811 10/7/08 Sassy Girl Cosmetics 6333 20017 \$191,91 10/12/08 General American Wholesalers 4813 20012 \$22,323 10/12/08 Sassy Girl Cosmetics 3230 20017 \$46,512 10/25/08 Sassy Girl Cosmetics 2004 20017 \$22,323 10/25/08 Sassy Girl Cosmetics 3200 20012 \$119,401 10/25/08 Prissy Princess 8300 20012 \$119,401 10/25/08 Prissy Princess 8300 20012 \$119,401 10/25/08 Prissy Princess 9375 20012 \$54,365 11/14/08 Sassy Girl Cosmetics 8320 20017 \$119,501 11/14/08 Sassy Girl Cosmetics 8320 20017 \$59,404 11/14/08 Sassy Girl Cosmetics 9431 20012 \$59,861 11/14/14/14/14/14/14/14/14/14/14/14/14/1		9/4/08	Prissy Princess	8931	20012	\$128,606
9/15/08 General American Wholesalers 3754 20012 554,056 9/20/08 5389; Girl Cosmetics 7039 20817 5101,361 9/21/08 Prissy Princess 7478 20012 5107,862 9/25/08 General American Wholesalers 2646 20012 533,810 20012 510,262 10/408 Prissy Princess 3859 20012 513,625 10/40/08 Prissy Princess 3859 20012 513,625 10/40/08 Prissy Princes 3859 20012 512,381 10/40/08 Prissy Princes 3859 20012 512,381 10/40/08 5389; Girl Cosmetics 6333 20817 591,195 10/12/08 General American Wholesalers 4813 20012 569,203 10/20/08 5389; Girl Cosmetics 3330 20817 591,195 10/26/08 5389; Girl Cosmetics 3330 20817 546,511 10/26/08 5389; Girl Cosmetics 3330 20012 5119,592 10/26/08 5389; Girl Cosmetics 3300 20012 5119,592 10/26/08 5389; Girl Cosmetics 3000 20012 5119,592 10/26/08 5899; Girl Cosmetics 3000 20012 5119,592 10/26/08 69102 500000 500000 500000 500000 500000		9/14/08	Sassy Girl Cosmetics	2031	20817	\$29,246
9/20/08 Sassy Girl Cosmetics 7039 20817 \$101,366 9/21/08 Prissy Princess 7478 20012 \$101,768 9/25/08 General American Wholesalers 2646 20012 \$38,101 9/26/08 Sassy Girl Cosmetics 6361 20817 \$91,598 10/4/08 Prissy Princess 9481 20012 \$136,528 10/4/08 General American Wholesalers 6333 20817 \$91,598 10/4/08 General American Wholesalers 4813 20012 \$52,308 10/20/08 Sassy Girl Cosmetics 6333 20817 \$591,598 10/21/08 Prissy Princess 1550 20012 \$52,308 10/25/08 Sassy Girl Cosmetics 3230 20817 \$46,515 10/25/08 Sassy Girl Cosmetics 2064 20817 \$29,722 10/27/08 Sassy Girl Cosmetics 2064 20817 \$29,722 10/27/08 General American Wholesalers 8300 20012 \$119,520 10/28/08 Prissy Princess 3775 20012 \$54,566 11/40/08 Prissy Princess 3775 20012 \$54,566 11/40/08 Prissy Princess 4825 20012 \$54,566 11/40/08 Sassy Girl Cosmetics 6160 20817 \$88,700 11/10/08 Sassy Girl Cosmetics 6160 20817 \$88,700 11/10/08 Sassy Girl Cosmetics 6160 20817 \$88,700 11/26/08 Sassy Girl Cosmetics 6160 20817 \$88,700 11/26/08 Prissy Princess 4825 20012 \$54,566 11/28/08 Sassy Girl Cosmetics 6188 20817 \$19,800 11/26/08 General American Wholesalers 4197 20012 \$59,406 11/26/09 Gener		9/14/08	Prissy Princess	8029	20012	\$115,618
9/21/08 Prissy Princess 7478 20012 \$107,888 9/25/08 General American Wholesalers 2646 20012 \$381,00 9/26/08 Sassy Girl Cosmetics 9/26/18 20012 \$136,528 10/4/08 Prissy Princess 9481 20012 \$136,528 10/4/08 Prissy Princess 9481 20012 \$136,528 10/4/08 Sassy Girl Cosmetics 6333 20817 \$91,938 10/4/08 Sassy Girl Cosmetics 6333 20817 \$91,938 10/12/08 Sassy Girl Cosmetics 4813 20012 \$93,00 10/15/08 Prissy Princess 1550 20012 \$22,323 10/20/08 Sassy Girl Cosmetics 2064 20817 \$329,722 10/27/08 Sassy Girl Cosmetics 2064 20817 \$329,722 10/27/08 Sassy Girl Cosmetics 2064 20817 \$329,722 10/28/08 Prissy Princess 8798 20012 \$119,499 11/408 Prissy Princess 3775 20012 \$543,60 11/408 Prissy Princess 3775 20012 \$543,60 11/408 Prissy Princess 3775 20012 \$543,00 11/408 Prissy Princess 3775 20012 \$543,00 11/408 Prissy Princess 3775 20012 \$543,00 11/408 Prissy Princess 1697 20012 \$572,720 11/408 Prissy Princess 4825 20817 \$113,890 11/408 Prissy Princess 4825 20817 \$589,00 11/24/08 Prissy Princess 4825 20012 \$59,860 11/24/08 Prissy Princess 4826 20012 \$59,860 11/24/08		9/15/08	General American Wholesalers	3754	20012	\$54,058
9/25/08 General American Wholesalers 2646 20012 \$38,102 9/26/08 Sassy Girl Cosmetics 6361 20817 \$91,598 10/4/08 Prissy Princess 9481 20012 \$136,522 10/7/08 General American Wholesalers 8598 20012 \$132,381 10/9/08 Sassy Girl Cosmetics 6333 20817 \$91,198 10/12/08 Sassy Girl Cosmetics 6333 20817 \$91,198 10/12/08 Sprincess 1550 20012 \$22,232 10/26/08 Sprincess 1550 20012 \$22,232 10/26/08 Sprincess 1550 20012 \$22,232 10/26/08 Sprincess 2064 20817 \$46,512 10/26/08 Prissy Princess 2094 20012 \$119,522 10/27/08 General American Wholesalers 2098 20012 \$119,522 10/27/08 General American Wholesalers 8300 20012 \$119,522 10/27/08 Frissy Princess 3375 20012 \$59,796 11/4/08 Prissy Princess 3775 20012 \$59,796 11/10/08 Sassy Girl Cosmetics 320 20817 \$19,806 11/10/08 General American Wholesalers 6791 20012 \$97,796 11/10/08 Sassy Girl Cosmetics 6820 20817 \$119,806 11/10/08 General American Wholesalers 6791 20012 \$27,272 11/10/08 Prissy Princess 1660 20817 \$88,700 11/10/08 General American Wholesalers 1894 20012 \$22,243 11/26/08 General American Wholesalers 1894 20012 \$22,243 11/26/08 General American Wholesalers 1894 20012 \$27,245 11/26/08 General American Wholesalers 1415 20012 \$27,245 11/26/08 General American Wholesalers 1415 20012 \$59,861 11/28/08 General American Wholesalers 1415 20012 \$59,861 11/28/08 General American Wholesalers 4425 20012 \$107,755 12/26/08 General American Wholesalers 445 20012 \$59,861 12/26/08 General American Wholesalers 4504 20012 \$59,861		9/20/08	Sassy Girl Cosmetics	7039	20817	\$101,362
9/26/08 Sassy Girl Cosmetics 6361 20817 \$91,598 10/4/08 Prissy Princess 9481 20012 \$136,528 10/7/08 General American Wholesalers 8598 20012 \$133,816 10/6/08 Sassy Girl Cosmetics 6333 20817 \$91,198 10/12/08 General American Wholesalers 4413 20012 \$69,303 10/13/08 Sassy Girl Cosmetics 2320 20817 \$46,513 10/26/08 Sassy Girl Cosmetics 2320 20817 \$46,513 10/26/08 Sassy Girl Cosmetics 2230 20817 \$46,513 10/25/08 Sassy Girl Cosmetics 2230 20817 \$46,513 10/27/08 General American Wholesalers 2398 20012 \$1119,526 10/27/08 General American Wholesalers 6791 20012 \$917,926 11/3/08 General American Wholesalers 6791 20012 \$97,796 11/4/08 Prissy Princess 3775 20012 \$54,366 11/10/08 Sassy Girl Cosmetics 6160 20817 \$88,704 11/12/08 Prissy Princess 1697 20012 \$22,443 11/12/08 Prissy Princess 61697 20012 \$59,366 11/28/08 Sassy Girl Cosmetics 6160 20817 \$89,101 11/28/08 General American Wholesalers 6481 20817 \$99,101 11/28/08 General American Wholesalers 6481 20817 \$99,101 11/28/08 General American Wholesalers 6481 20817 \$99,101 11/28/08 Prissy Princess 7483 20012 \$107,755 12/24/08 Prissy Princess 6481 20817 \$99,101 12/24/08 Prissy Princess 6481 20817 \$98,101 12/24/08 Prissy Princess 6481 20817 \$99,101 12/24/08 Prissy Princess 6481 20817 \$98,101 12/24/08 Prissy Princess 6481 20817 \$98,501 12/24/08 Prissy Princess 6490 20012 \$34,801 12/24/08 Prissy Princess 6490 20012 \$34,801 12/24/08 Prissy Princess 6490 20012 \$34,801 12/24/08 Prissy Princess 6490 20012 \$39,254 12/24/08 Prissy Princess 6490 20012 \$39,254 12/24/08 Prissy Princess 6490 20012 \$39,254		9/21/08	Prissy Princess	7478	20012	\$107,683
10/4/08 Prissy Princess 9481 20012 5136,526		9/25/08	General American Wholesalers	2646	20012	\$38,102
10/7/08 General American Wholesalers 8598 20012 3123,811 10/9/08 Sassy Girl Cosmetics 6333 20817 591,194 10/12/08 General American Wholesalers 4813 20012 522,322 10/12/08 Sassy Girl Cosmetics 3230 20817 546,512 10/12/08 Sassy Girl Cosmetics 3230 20817 546,512 10/12/08 Sassy Girl Cosmetics 2004 20817 529,722 10/12/08 General American Wholesalers 8298 20012 5119,491 10/12/08/08 Prissy Princess 8300 20012 5119,491 10/12/08/08 Prissy Princess 8300 20012 5119,491 11/13/08 General American Wholesalers 6791 20012 597,796 11/13/08 General American Wholesalers 6791 20012 597,796 11/13/08 Sassy Girl Cosmetics 8320 20817 588,706 11/13/08 Sassy Girl Cosmetics 8320 20817 588,706 11/13/08 General American Wholesalers 1894 20012 527,274 11/13/08 General American Wholesalers 1894 20012 527,274 11/13/08 Fissy Princess 4825 20012 529,486 11/12/08 Prissy Princess 4825 20012 599,486 11/12/08 Prissy Princess 4825 20012 599,486 11/12/08 Sassy Girl Cosmetics 6188 20817 598,510 11/12/08 Sassy Girl Cosmetics 6184 20817 598,510 11/12/08 General American Wholesalers 4157 20012 599,816 11/12/08 Sassy Girl Cosmetics 6841 20817 598,510 11/12/08 Sassy Girl Cosmetics 6841 20817 598,510 11/12/08 General American Wholesalers 4504 20012 514,959 11/12/08 Prissy Princess 6157 20012 584,856 12/13/08 Prissy Princess 6157 20012 588,656 12/13/08 Prissy Princess 6157 20012 588,656 12/13/08 Sassy Girl Cosmetics 5943 20817 586,357 11/10/09 Sassy Girl Cosmetics 5943 20817 585,576 11/10/09 Sassy Girl Cosmetics 5943 20817 585,576 11/10/09 Sassy Girl Cosmetics 4415 20817 585,576 11/10/09 Sassy Girl Cosmetics 4415 20817 585,576 11/10/09 Sassy Girl Cosmetics 4415 20817 585,576 11/10/09 Sassy Girl Cosmetics 4937 20012 5371,093		9/26/08	Sassy Girl Cosmetics	6361	20817	\$91,598
10/9/08 Sassy Girl Cosmetics 6333 20817 591,195		10/4/08	Prissy Princess	9481	20012	\$136,526
10/12/08 General American Wholesalers 4813 20012 \$69,301		10/7/08	General American Wholesalers	8598	20012	\$123,811
10/15/08 Prissy Princess 1550 20012 \$22,320		10/9/08	Sassy Girl Cosmetics	6333	20817	\$91,195
10/20/08 Sasy Girl Cosmetics 3230 20817 \$46,512 10/25/08 Sasy Girl Cosmetics 2064 20817 \$329,722 10/27/08 General American Wholesalers 8298 20012 \$119,522 10/28/08 Prissy Princess 8300 20012 \$119,522 11/3/08 General American Wholesalers 6791 20012 \$574,360 11/4/08 Prissy Princess 3775 20012 \$54,360 11/10/08 Sassy Girl Cosmetics 8320 20817 \$119,808 11/10/08 Sassy Girl Cosmetics 8320 20817 \$119,808 11/10/08 Sassy Girl Cosmetics 8320 20817 \$119,808 11/10/08 Sassy Girl Cosmetics 8425 20012 \$24,437 11/24/08 Prissy Princess 4825 20012 \$24,437 11/24/08 Prissy Princess 4825 20012 \$59,861 11/28/08 Sassy Girl Cosmetics 6188 20817 \$59,861 12/3/08 Sassy Girl Cosmetics 6841 20817 \$59,861 12/3/08 Sassy Girl Cosmetics 6841 20817 \$59,861 12/3/08 General American Wholesalers 1462 20012 \$107,755 12/6/08 General American Wholesalers 8680 20012 \$124,992 12/14/08 Prissy Princess 6257 20012 \$50,010 12/24/08 General American Wholesalers 4504 20012 \$64,885 12/14/08 Prissy Princess 6157 20012 \$58,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$63,576 12/28/08 Sassy Girl Cosmetics 5943 20817 \$63,576 11/10/09 Prissy Princess 2726 20012 \$39,254 11/10/09 Prissy Princess 2726 20012 \$39,254 11/10/09 General American Wholesalers 4937 20012 \$53,3576 11/10/09 General American Wholesalers 4937 20012 \$53,576 11/16/09 General American Wholesalers 4937 20012 \$53,576 11/16/09 General American Wholesalers 4937 20012 \$53,576 11/16/09 General American Wholesalers 59602 20817 \$138,266 11/18/09 General American Wholesalers 7025 20012 \$101,160 11/18/09 General American Wholesalers 7025 20012 \$101,160 11/18/09 General American Wholesalers 7025 20012 \$101,160 11/18/09 General Am		10/12/08	General American Wholesalers	4813	20012	\$69,307
10/25/08 Sassy Girl Cosmetics 2064 20817 \$29,722		10/15/08	Prissy Princess	1550	20012	\$22,320
10/27/08 General American Wholesalers 8298 20012 \$119,499		10/20/08	Sassy Girl Cosmetics	3230	20817	\$46,512
10/28/08 Prissy Princess 8300 20012 5115,526 11/3/08 General American Wholesalers 6791 20012 597,796 11/4/08 Prissy Princess 3775 20012 554,366 11/10/08 Sassy Girl Cosmetics 8320 20817 5119,808 11/10/08 Sassy Girl Cosmetics 6160 20817 588,706 11/10/08 General American Wholesalers 1894 20012 527,274 11/15/08 Prissy Princess 1697 20012 524,432 11/24/08 Prissy Princess 4825 20012 569,486 11/28/08 Sassy Girl Cosmetics 6188 20817 589,100 11/28/08 Sassy Girl Cosmetics 6841 20817 598,510 12/3/08 Sassy Girl Cosmetics 6841 20817 598,510 12/4/08 Prissy Princess 7483 20012 510,755 12/6/08 General American Wholesalers 1462 20012 510,755 12/6/08 Sassy Girl Cosmetics 3221 20817 546,885 12/24/08 Prissy Princess 6257 20012 590,101 12/24/08 General American Wholesalers 4504 20012 564,855 12/28/08 Sassy Girl Cosmetics 5943 20817 585,575 12/28/08 Sassy Girl Cosmetics 5943 20817 585,575 17/7/09 Sassy Girl Cosmetics 5943 20817 585,575 17/7/09 Prissy Princess 2726 20012 539,254 17/10/09 General American Wholesalers 4937 20012 5310,160 17/15/09 Sassy Girl Cosmetics 9602 20817 538,266 17/18/09 General American Wholesalers 7025 20012 5101,160 17/15/09 Sassy Girl Cosmetics 9602 20817 538,266 17/18/09 General American Wholesalers 7025 20012 5101,160 17/15/09 Sassy Girl Cosmetics 9602 20817 538,266 17/18/09 General American Wholesalers 7025 20012 5101,160 17/15/09 Sassy Girl Cos		10/25/08	Sassy Girl Cosmetics	2064	20817	\$29,722
11/3/08 General American Wholesalers 6791 20012 597,790		10/27/08		8298	20012	\$119,491
11/4/08		10/28/08	Prissy Princess	8300	20012	\$119,520
11/10/08 Sassy Girl Cosmetics 8320 20817 \$119,808 11/10/08 Sassy Girl Cosmetics 6160 20817 \$88,704 11/10/08 General American Wholesalers 1894 20012 \$27,274 11/15/08 Prissy Princess 1697 20012 \$24,433 11/24/08 Prissy Princess 4825 20012 \$69,488 11/28/08 Sassy Girl Cosmetics 6188 20817 \$89,107 11/28/08 General American Wholesalers 4157 20012 \$59,861 11/28/08 General American Wholesalers 4157 20012 \$59,861 11/28/08 Prissy Princess 7433 20012 \$107,755 12/3/08 Sassy Girl Cosmetics 68841 20817 \$98,510 12/4/08 Prissy Princess 7433 20012 \$107,755 12/6/08 General American Wholesalers 1462 20012 \$21,053 12/14/08 Sassy Girl Cosmetics 3221 20817 \$46,382 12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,856 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 11/70/9 Sassy Girl Cosmetics 4415 20817 \$85,575 11/70/9 Prissy Princess 2726 20012 \$39,254 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,265 1/15/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 General American Wholesalers 7025 20012 \$11,160		11/3/08	General American Wholesalers	6791	20012	\$97,790
11/10/08 Sassy Girl Cosmetics 6160 20817 \$88,704 11/10/08 General American Wholesalers 1894 20012 \$27,274 11/15/08 Prissy Princess 1697 20012 \$24,437 11/24/08 Prissy Princess 4825 20012 \$69,480 11/28/08 Sassy Girl Cosmetics 6188 20817 \$89,107 11/28/08 General American Wholesalers 4157 20012 \$59,861 12/3/08 Sassy Girl Cosmetics 6841 20817 \$98,510 12/4/08 Prissy Princess 7483 20012 \$107,755 12/4/08 Prissy Princess 7483 20012 \$107,755 12/4/08 General American Wholesalers 1462 20012 \$21,053 12/11/08 General American Wholesalers 8680 20012 \$12,492 12/14/08 Prissy Princess 3221 20817 \$46,382 12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 Prissy Princess 6157 20012 \$64,858 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 17/09 Sassy Girl Cosmetics 4415 20817 \$63,576 11/10/09 Prissy Princess 2726 20012 \$39,254 11/10/09 General American Wholesalers 4937 20012 \$71,093 11/15/09 General American Wholesalers 4937 20012 \$71,093 11/15/09 General American Wholesalers 4937 20012 \$71,093 11/18/09 General American Wholesalers 4937 20012 \$71,093		11/4/08	Prissy Princess			\$54,360
11/10/08 General American Wholesalers 1894 20012 \$27,274 11/15/08 Prissy Princess 1697 20012 \$24,437 11/24/08 Prissy Princess 4825 20012 \$69,480 11/28/08 Sassy Girl Cosmetics 6188 20817 \$89,107 11/28/08 General American Wholesalers 4157 20012 \$59,861 12/3/08 Sassy Girl Cosmetics 6841 20817 \$98,510 12/4/08 Prissy Princess 7483 20012 \$107,755 12/6/08 General American Wholesalers 1462 20012 \$21,053 12/11/08 General American Wholesalers 1462 20012 \$124,992 12/14/08 Prissy Princess 3221 20817 \$46,385 12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,858 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 11/709 Sassy Girl Cosmetics 4415 20817 \$63,576 11/10/09 Prissy Princess 2726 20012 \$39,254 11/10/09 General American Wholesalers 4937 20012 \$71,093 1/115/09 General American Wholesalers 4937 20012 \$71,093 1/115/09 Sassy Girl Cosmetics 9602 20817 \$138,265 1/118/09 General American Wholesalers 7025 20012 \$10,160	••••••		· ·		-	
11/15/08 Prissy Princess 1697 20012 \$24,433 11/24/08 Prissy Princess 4825 20012 \$69,486 11/28/08 Sassy Girl Cosmetics 6188 20817 \$89,100 11/28/08 General American Wholesalers 4157 20012 \$59,861 12/3/08 Sassy Girl Cosmetics 6841 20817 \$98,510 12/4/08 Prissy Princess 7483 20012 \$107,755 12/6/08 General American Wholesalers 1462 20012 \$21,053 12/14/08 Prissy Princess 8680 20012 \$124,992 12/14/08 Prissy Princess 3221 20817 \$46,382 12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,858 12/24/08 General American Wholesalers 4504 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,265 1/18/09 General American Wholesalers 7025 20012 \$101,160			· ·			
11/24/08 Prissy Princess 4825 20012 \$69,480 11/28/08 Sassy Girl Cosmetics 6188 20817 \$89,102 11/28/08 General American Wholesalers 4157 20012 \$59,861 12/3/08 Sassy Girl Cosmetics 6841 20817 \$98,510 12/4/08 Prissy Princess 7483 20012 \$107,755 12/6/08 General American Wholesalers 1462 20012 \$21,053 12/11/08 General American Wholesalers 8680 20012 \$124,992 12/14/08 Prissy Princess 3221 20817 \$46,382 12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,858 12/24/08 General American Wholesalers 4504 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 11/709 Sassy Girl Cosmetics 4415 20817 \$63,576 11/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,265 1/18/09 General American Wholesalers 7025 20012 \$101,160					-	
11/28/08 Sassy Girl Cosmetics 6188 20817 \$89,107 11/28/08 General American Wholesalers 4157 20012 \$59,861 12/3/08 Sassy Girl Cosmetics 6841 20817 \$98,510 12/4/08 Prissy Princess 7483 20012 \$107,755 12/6/08 General American Wholesalers 1462 20012 \$21,053 12/11/08 General American Wholesalers 8680 20012 \$124,992 12/11/08 Sassy Girl Cosmetics 3221 20817 \$46,382 12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,858 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,266 1/18/09 General American Wholesalers 7025 20012 \$101,166			· · · · · · · · · · · · · · · · · · ·			
11/28/08 General American Wholesalers 4157 20012 \$59,861 12/3/08 Sassy Girl Cosmetics 6841 20817 \$98,510 12/4/08 Prissy Princess 7483 20012 \$107,755 12/6/08 General American Wholesalers 1462 20012 \$21,053 12/11/08 General American Wholesalers 8680 20012 \$124,992 12/11/08 Sassy Girl Cosmetics 3221 20817 \$46,382 12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,858 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 17/09 Sassy Girl Cosmetics 4415 20817 \$63,576 11/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,265 1/18/09 General American Wholesalers 7025 20012 \$101,160					-	
12/3/08 Sassy Girl Cosmetics 6841 20817 \$98,510 12/4/08 Prissy Princess 7483 20012 \$107,755 12/6/08 General American Wholesalers 1462 20012 \$21,053 12/11/08 General American Wholesalers 8680 20012 \$124,992 12/14/08 Sassy Girl Cosmetics 3221 20817 \$46,382 12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,858 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 Prissy Princess 9602 20817 \$138,266 1/18/09 General American Wholesalers 9602 20817 \$138,266 1/18/09 General American Wholesalers 7025 20012 \$101,160	Z .				-	
12/4/08 Prissy Princess 7483 20012 \$107,755 12/6/08 General American Wholesalers 1462 20012 \$21,055 12/11/08 General American Wholesalers 8680 20012 \$124,992 12/14/08 Sassy Girl Cosmetics 3221 20817 \$46,382 12/24/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,856 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,266 1/18/09 General American Wholesalers 7025 20012 \$101,160	'\					
12/6/08 General American Wholesalers 1462 20012 \$21,053 12/11/08 General American Wholesalers 8680 20012 \$124,992 12/14/08 Sassy Girl Cosmetics 3221 20817 \$46,382 12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,858 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,265 1/18/09 General American Wholesalers 7025 20012 \$101,160			· · ·		-	
Write your answer here. 12/11/08 General American Wholesalers 8680 20012 \$124,992 12/14/08 Sassy Girl Cosmetics 3221 20817 \$46,382 12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,858 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,579 1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,269 1/18/09 General American Wholesalers 7025 20012 \$101,160					-	
12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,858 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,579 17/09 Sassy Girl Cosmetics 4415 20817 \$63,576 11/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,269 1/18/09 General American Wholesalers 7025 20012 \$101,160						
12/14/08 Prissy Princess 6257 20012 \$90,101 12/24/08 General American Wholesalers 4504 20012 \$64,858 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,579 1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,269 1/18/09 General American Wholesalers 7025 20012 \$101,160	Write your answer here.				-	
12/24/08 General American Wholesalers 4504 20012 \$64,858 12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,579 1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,269 1/18/09 General American Wholesalers 7025 20012 \$101,160					 	
12/25/08 Prissy Princess 6157 20012 \$88,661 12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,266 1/18/09 General American Wholesalers 7025 20012 \$101,160					-	
12/28/08 Sassy Girl Cosmetics 5943 20817 \$85,575 1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,266 1/18/09 General American Wholesalers 7025 20012 \$101,160						\$88,661
1/7/09 Sassy Girl Cosmetics 4415 20817 \$63,576 1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,269 1/18/09 General American Wholesalers 7025 20012 \$101,160			,			\$85,579
1/10/09 Prissy Princess 2726 20012 \$39,254 1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,265 1/18/09 General American Wholesalers 7025 20012 \$101,160				4415	20817	\$63,576
1/10/09 General American Wholesalers 4937 20012 \$71,093 1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,269 1/18/09 General American Wholesalers 7025 20012 \$101,160			, , , , , , , , , , , , , , , , , , ,	2726	20012	\$39,254
1/15/09 Sassy Girl Cosmetics 9602 20817 \$138,269 1/18/09 General American Wholesalers 7025 20012 \$101,160						\$71,093
1/18/09 General American Wholesalers 7025 20012 \$101,160						\$138,269
1/20/09 Prissy Princess 4726 20012 \$68.052			· ·			\$101,160
1/20/07 1/1359 1/1359 1/20 20072 300,05-		1/20/09	Prissy Princess	4726	20012	\$68,054

Exercise Solution

What did you see in the data? Is the CEO right that only tween girls purchase MoisturePlus, or might there be someone else?

Time to drill further into the data

You looked at the mass of data with a very clear task: find out who's buying besides tween girls.

You found a company called General American Wholesalers. Who are they? And who's buying from them?

Acme

At Acme's request, General American Wholesalers sent over this breakdown of their customers for MoisturePlus. Does this information help you figure out who's buying?

GAW vendor breakdown for six months ending 2/2009 MoisturePlus sales only

Vendor	Units	%
Manly Beard Maintenance, Inc.	9785	23%
GruffCustomer.com	20100	46%
Stu's Shaving Supply LLC	8093	19%
Cosmetics for Men, Inc.	5311	12%
Total	43289	100%

Write	down	what this data tells	YOU
about	who's	buying MoisturePlus.	\

.....

What did General American Wholesaler's vendor list tell you about who's buying MoisturePlus?

Exercise Solution

GAW vendor breakdown for six months ending 2/2009 MoisturePlus sales only

Vendor	Units	%
Manly Beard Maintenance, Inc.	9785	23%
GruffCustomer.com	20100	46%
Stu's Shaving Supply LLC	8093	19%
Cosmetics for Men, Inc.	5311	12%
Total	43289	100%

It looks like men are buying MoisturePlus! Looking at the original Acme vendor list, you couldn't tell that there were men buying. But General American Wholesalers is reselling MoisturePlus to shaving supply vendors

General American Wholesalers confirms your impression

Yeah, the old guys like it, too, even though they're embarrassed that it's a tween product. It's great for post-shave skin conditioning.

This could be huge.

It looks like there's a whole group of people out there buying MoisturePlus that Acme hasn't recognized.

With any luck, this group of people could be where you have the potential to grow Acme's sales.

I'm intrigued. This intelligence might bring about a huge shift in how we do business. Could you just walk me through how you came to this conclusion? And what should we do with this new information?

You've made it to the final stage of this analysis.

It's time to write your report. Remember, walk your client through your thought process in detail. How did you come to the insights you've achieved?

Finally, what do you suggest that he do to improve his business on the basis of your insights? How does this information help him **increase sales?**

How has the mental model changed? What evidence led you to your conclusion? Do you have any lingering uncertainties?

How did you recap your work, and what do you recommend that the CEO do in order to increase sales?

I started off trying to figure out how to increase sales to tween girls, because we believed that those girls were MoisturePlus's sole client base. When we discovered that the tween girl market was saturated, I dug deeper into the data to look for sources of increased sales. In the process, I changed the mental model. Turns out there are more people than we realized who are enthusiastic about our product—especially older men. Since this group of customers is quiet about their enthusiasm for the product, I recommend that we increase our advertising to them dramatically, selling the same product with a more men-friendly label. This will increase sales.

there are no Dumb Questions

If I have to get more detailed data to answer my questions, how will I know when to stop? Do I need to go as far as interviewing customers myself?

How far to go chasing new and deeper data sources is ultimately a question about your own best judgement. In this case, you searched until you found a new market segment, and that was enough to enable you to generate a compelling new sales strategy. We'll talk more about when to stop collecting data in future chapters.

Is seems like getting that wrong mental model at the beginning was devastating to the first analysis I did.

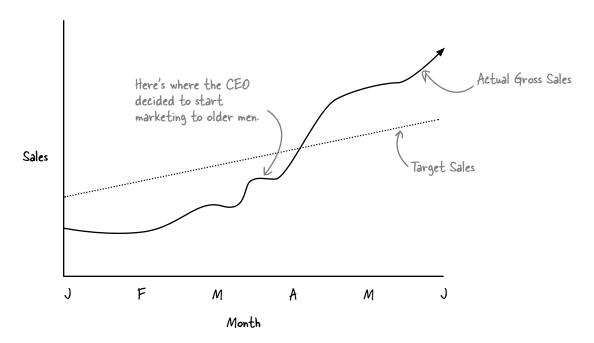
A: Yeah, getting that assumption incorrect at the beginning doomed your analysis to the wrong answers. That's why it's so important to make sure that your models are based on the right assumptions from the very beginning and be ready to go back and refine them as soon as you get data that upsets your assumptions.

Does analysis ever stop? I'm looking for some finality here.

A: You certainly can answer big questions in data analysis, but you can never know everything. And even if you knew everything today, tomorrow would be different. Your recommendation to sell to older men might work today, but Acme will always need analysts chasing sales.

Q: Sounds depressing.

A: On the contrary! Analysts are like detectives, and there are always mysteries to be solved. That's what makes data analysis so much fun! Just think of going back, refining your models, and looking at the world through your new models as being a fundamental part of your job as data analyst, not an exception the rule.

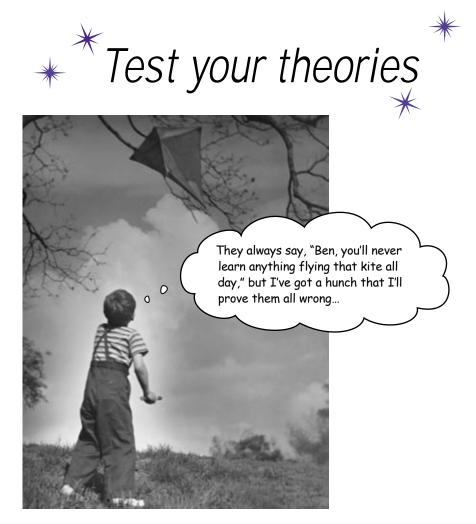

Here's what you did

Here's one last look at the steps you've gone You suggested that increasing through to reach your conclusion about how to ads to tweens might increase the sales of Acme's MoisturePlus. bring sales back in line. You compared the elements You summarized what you You got clarification and of your summary. knew into a useful format. data from the CEO. Disassemble **Evaluate Define** Decide Then the tween market report challenged your mental model. **Define** Decide **Disassemble Evaluate** You discovered older men You recommended among Moisture Plus buyers. increasing marketing You collected to older men. more data about You looked at your MoisturePlus customers. areas of uncertainty. Well, I'm sold. Let's go after the old guys all the way!

Your analysis led your client to a brilliant decision

After he received your report, the CEO quickly mobilized his marketing team and created a SmoothLeather brand moisturizer, which is just MoisturePlus under a new name.

Acme immediately and aggressively marketed SmoothLeather to older men. Here's what happened:



Sales took off! Within two months sales figures had exceeded the target levels you saw at the beginning of the chapter.

Looks like your analysis paid off!

2 experiments

Can you show what you believe?

In a real **empirical** test? There's nothing like a good experiment to solve your problems and show you the way the world really works. Instead of having to rely exclusively on your **observational data**, a well-executed experiment can often help you make **causal connections**. Strong empirical data will make your analytical judgments all the more powerful.

It's a coffee recession!

Times are tough, and even Starbuzz Coffee has felt the sting. Starbuzz has been the place to go for premium gourmet coffee, but in the past few months, sales have plummeted relative to their projections. Sales are way down, and we need a plan to get back on track. It's up to you to make a 0 recommendation to the board. 0 Today Projected Sales Actual Time This isn't good at all!

The Starbuzz CEO has called you in to help figure out how to get sales back up.

The Starbuzz CEO

The Starbuzz board meeting is in three months

That's not a lot of time to pull a turnaround plan together, but it must be done.

We don't totally know why sales are down, but we're pretty sure the economy has something to do with it. Regardless, you need to figure out how to **get sales back up**.

What would you do for starters?

From: CEO, Starbuzz

To: Head First

Subject: Fwd: Upcoming board meeting

Did you see this?!?

From: Chairman of the Board, Starbuzz

To: CEO

Subject: Upcoming board meeting

The board is expecting a complete turnaround plan at the next meeting. We're sorely disappointed by the sales

decline.

If your plan for getting numbers back up is insufficient, we'll be forced to enact *our* plan, which first involve the replacement of all high-level staff.

Thanks.

Yikes!

Sharpen your pencil

Take a look at the following options. Which do you think would be the best ways to **start**? Why?

Interview the CEO to figure out how Starbuzz works as a business.	Interview the Chairman of the Board
Do a survey of customers to find out what they're thinking.	Pour yourself a tall, steamy mug of Starbuzz coffee.
Find out how the projected sales figures were calculated.	1
	Write in the blanks what you think about each of these options.

Where do you think is the best place to start figuring out how to increase Starbuzz sales?

Interview the CEO to figure out how Starbuzz works as a business.

Definitely a good place to start. He'll have all

sorts of intelligence about the business.

Do a survey of customers to find out what they're thinking.

This would also be good. You'll have to get inside

their heads to get them to buy more coffee.

Find out how the projected sales figures were calculated.

This would be interesting to know, but it's

probably not the first thing you'd look at ..

Interview the Chairman of the Board

Going out on a limb here. Your client is really

the CEO, and going over his head is dicey.

Pour yourself a tall, steamy mug of Starbuzz coffee.

Starbuzz is awfully tasty. Why not have a cup?

I like the idea of looking at our surveys. Give them a gander and tell me what you see.

Marketing runs surveys monthly.

They take a *random*, representative sample of their coffee consumers and ask them a bunch of pertinent questions about how they feel about the coffee and the coffee-buying experience.

What people **say** in surveys does not always fit with how they **behave** in reality, but it never hurts to ask people how they feel.

"Random"... remember that word!

The Starbuzz Survey

Here it is: the survey the marketing department administers monthly to a large sample of Starbuzz customers.

If you're a Starbuzz customer, there's a good chance someone will hand you one of these to fill out.

Starbuzz Survey

Thank you for filling out our Starbuzz survey! Once you're finished, our manager will be delighted to give you a \$10 gift card for use at any Starbuzz location. Thank you for coming to Starbuzz!

Date

January 2009

Starbuzz store #

04524

Circle the number that corresponds to how you feel about each statement. I means strongly disagree, 5 means strongly agree.

"Starbuzz coffee stores are located conveniently for me."

1

2

"My coffee is always served at just the right temperature."

1

9

5

"Starbuzz employees are courteous and get me my drink quickly."

1

"I think Starbuzz coffee is a great value."

1

2

3

3

3

4

5

"Starbuzz is my preferred coffee destination."

1

9

3

4

A higher score means you agree strongly. This customer really prefers Starbuzz

How would you summarize this survey data?

Always use the method of comparison

One of the most fundamental principles of analysis and statistics is the **method of comparison**, which states that data is interesting only in comparison to other data.

In this case, the marketing department takes the average answer for each question and compares those averages month by month.

Each monthly average is useful *only* when you compare it to numbers from other months.

Statistics are illuminating only in relation to other statistics.

,	Stanburz Su	Prov				
	Starbuzz Surve	7				
Sta	rbuzz Survey					
Tha	nk you for filling out our	Starbuzz su	rvev! Once y	ou're finished.		
	manage buzz loc	Survey				
Date	Thank you fo	r filling out	our Starbuzz	survey! Once	vou're finished.	_
Star	Starbuzz Surve	≥y				r
Circ stat	our manager will be Starbuzz location, T	delighted to	give you a §	10 gift card for	finished, use at any	
Starr	Date	Janus	ary 2009			ch
	Starbuzz store #	04524	1			e.
"My c	Circle the number statement. I mean	that corre	sponds to disagree,	how you feel 5 means stro	about each	
"Stark	"Starbuzz coffee store:	are located	convenientl	y for me."		
Start	1	2	3	4	(3)	
	"My coffee is always se	erved at just	the right ter	operature."		
"I thin	1	2	3	4)	5	
	"Starbuzz employees a	re courteou	s and get me	my drink quic	kly."	
"Starb	1	2	3	4	· 👽 .	
	"I think Starbuzz coffe	e is a great v	ralue."			
	1	2	3	4	5	A
	"Starbuzz is my prefera	ed coffee de	stination."			$\lceil \backslash \rceil$
	1	2	3	4	6	

Here's a summary of marketing surveys for the 6 months ending January 2009. The figures represent the average score given to each statement by survey respondents from participating stores.

	Aug-08	Sept-08	Oct-08	Nov-08	Dec-08	Jan-09
Location convenience	4.7	4.6	4.7	4.2	4.8	4.2
Coffee temperature	4.9	4.9	4.7	4.9	4.7	4.9
Courteous employees	3.6	4.1	4.2	3.9	3.5	4.6
Coffee value	4.3	3.9	3.7	3.5	3.0	2.1
Preferred destination	3.9	4.2	3.7	4.3	4.3	3.9
			•	•	•	

Participating stores 100 101 99 99 101 100

The answers to the questions are all averaged and grouped into this table.

This number is only useful when you compare it to these numbers.

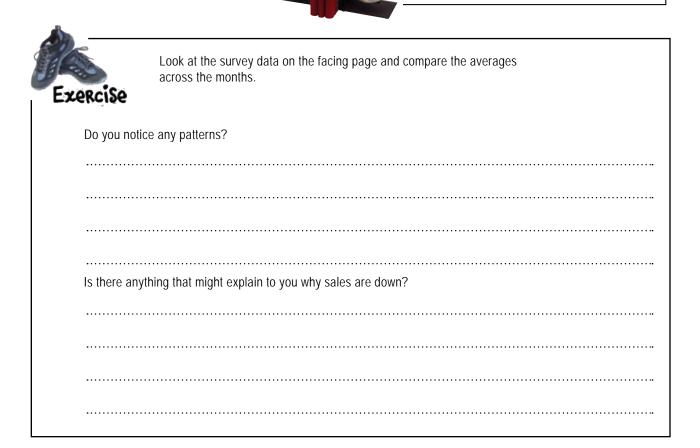
Always make comparisons explicit.

If a statistic seems interesting or useful, you need to explain **why** in terms of how that statistic compares to others.

If you're not explicit about it, you're assuming that your client will make the comparison on their own, and that's **bad analysis**.

Comparisons are key for observational data

The more comparative the analysis is, the better. And this is true especially in observational studies like the analysis of Starbuzz's marketing data.


In observational data, you just watch people and let them decide what groups they belong to, and taking an inventory of observational data is often the **first step** to getting better data through experiments.

Groups of people might be "big spenders," "tea drinkers," etc.

In experiments, on the other hand, you decide which groups people go into.

-Scholar's Corner

Observational study A study where the people being described decide on their own which groups they belong to.

Now you've looked closely at the data to figure out what patterns the data contains.

Exercise Socution

Do you notice any patterns?

All the variables except for "Coffee value" bounce around within a narrow range. "Coffee

temperature," for example, has a high score of 4.9 and a low score of 4.7, which isn't much

variation. "Coffee value," on the other hand, shows a pretty significant decline. The December score

is half of the August score, which could be a big deal.

Is there anything that might explain to you why sales are down?

It would make sense to say that, if people on average think that the coffee isn't a good value for

the money, they'd tend to spend less money at Starbuzz And because the economy's down, it makes

sense that people have less money and that they'd find Starbuzz to be less of a value.

Could value perception be causing the revenue decline?

According to the data, everything's going along just fine with Starbuzz customers, except for one variable: perceived Starbuzz coffee value

It looks like people might be buying less because they don't think Starbuzz is a good bang for the buck. Maybe the economy has made people a little more cash-strapped, so they're more sensitive to prices.

Let's call this theory the "value problem."

Starbuzz Coffee

Summary of marketing surveys for six months ending January 2009. The figures represents the average score given to each statement by survey respondents from participating stores.

.7	4.6 4.9	4.7	4.2	4.8	4.2
.9	4.9	4.7	4.9	4.7	4.0
			1.0	4.7	4.9
.6	4.1	4.2	3.9	3.5	4.6
.3	3.9	3.7	3.5	3.0	2.1
.9	4.2	3.7	4.3	4.3	3.9
	.3	.3 3.9	3.9 3.7	3.9 3.7 3.5	3 3.9 3.7 3.5 3.0

 Participating stores
 100
 101
 99
 99
 101
 100

This variable shows a pretty steady decline over the past six months.

Do you think that the decline in perceived value is the reason for the sales decline?

Dumb Questions

How do I know that a decline in value actually caused coffee sales to go down?

A: You don't. But right now the perceived value data is the only data you have that is congruent with the decline in sales. It looks like sales and perceived value are going down together, but you don't know that the decline in value has caused the decline in sales. Right now, it's just a theory.

Could there be other factors at play? Maybe the value problem isn't as simple as it looks.

A: There almost certainly *are* other factors at play. With observational studies, you should assume that other factors are

confounding your result, because you can't **control for** them as you can with experiments. More on those buzzwords in a few pages.

Could it be the other way around? Maybe declining sales caused people to think the coffee is less valuable.

That's a great question, and it could definitely be the other way around. A good rule of thumb for analysts is, when you're starting to suspect that causes are going in one direction (like value perception decline causing sales decline), flip the theory around and see how it looks (like sales decline causes value perception decline).

So how do I figure out what causes what?

We're going to talk a lot throughout this book about how to draw conclusions about causes, but for now, you should know that observational studies aren't that powerful when it comes to drawing causal conclusions. Generally, you'll need other tools to get those sorts of conclusions.

It sounds like observational studies kind of suck.

A: Not at all! There is a ton of observational data out there, and it'd be crazy to ignore it because of the shortcomings of observational studies. What's really important, however, is that you understand the limitations of observational studies, so that you don't draw the wrong conclusions about them.

Your so-called "value problem" is no problem at all at my stores! Our Starbuzz is hugely popular, and no one thinks that Starbuzz is a poor value. There must be some sort of mistake.

The manager of the SoHo stores does not agree

SoHo is a wealthy area and the home of a bunch of really lucrative Starbuzz stores, and the manager of those stores does not believe it's true that there's a value perception problem. Why do you think she'd disagree?

Are her customers lying? Did someone record the data incorrectly? Or is there something problematic about the observational study itself?

A typical customer's thinking

Jim: Forget about Starbuzz SoHo. Those guys just don't know how to read the numbers, and numbers don't lie

Frank: I wouldn't be so quick to say that. Sometimes the instincts of the people on the ground tell you more than the statistics.

Joe: You're so right on. In fact, I'm tempted to just scrap this entire data set. Something seems fishy.

Jim: What specific reason do you have to believe that this data is flawed?

Joe: I dunno. The fishy smell?

Frank: Look, we need to go back to our interpretation of the typical or average customer.

Joe: Fine. Here it is. I drew a picture.

Frank: Is there any reason why this chain of events wouldn't apply to people in SoHo?

Jim: Maybe the SoHo folks are not hurting economically. The people who live there are sickly rich. And full of themselves, too.

Joe: Hey, my girlfriend lives in SoHo.

Frank: How you persuaded someone from the fashionable set to date you I have no idea. Jim, you may be on to something. If you're doing well moneywise, you'd be less likely to start believing that Starbuzz is a poor value.

Starbuzz sales
go down

It's always a good idea
to draw pictures of how
you think things relate.

People's actions are
making this happen.

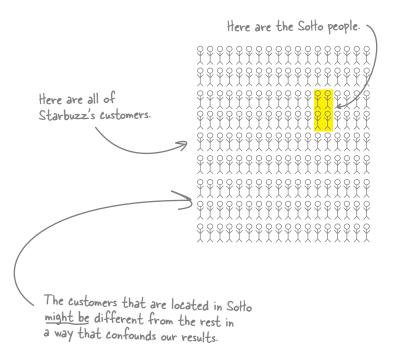
It looks like the SoHo
Starbuzz customers
may be <u>different</u>
from all the other
Starbuzz customers...

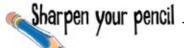
Everyone's affected by this.

Economy

down

I have less money

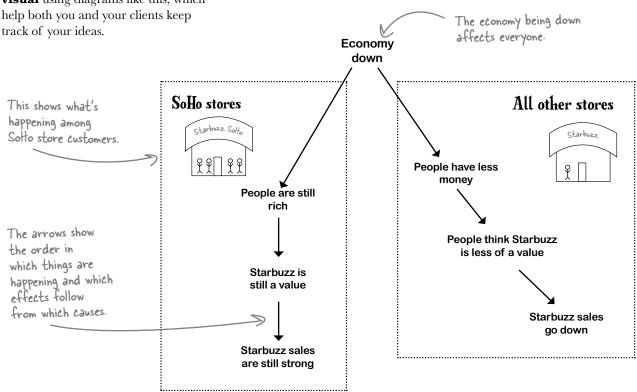

Starbuzz is less of a value


Observational studies are full of confounders

A **confounder** is a difference among the people in your study other than the factor you're trying to compare that ends up making your results less sensible.

In this case, you're comparing Starbuzz customers to each other at different points in **time**. Starbuzz customers are obviously different from each other—they're different people.

But if they're different from each other in respect to a variable you're trying to understand, the difference is a confounder, and in this case the confounder is **location**.



Redraw the causal diagram from the facing page to distinguish between SoHo stores and all the other stores., **correcting for the location confounder**.

Assume that the SoHo manager is correct and that SoHo customers don't perceive a value problem. How might that phenomenon affect sales?

How location might be confounding your results

Here's a refined diagram to show how things might be happening. It's a really good idea to **make your theories visual** using diagrams like this, which help both you and your clients keep track of your ideas

What would you do to the data to show whether Starbuzz value perception in SoHo is still going strong? More generally, what would you do to observational study data to keep your confounders under control?

there are no **Dumb Questions**

In this case, isn't it really the *wealth* of the customers rather than the *location* that confounds the results?

A: Sure, and they're probably related. If you had the data on how much money each customers has, or how much money each customer feels comfortable spending, you could run the analysis again to see what sort of results wealth-based grouping gets you. But since we don't have that information, we're using location. Besides, location makes sense, because our theory says that wealthier people tend to shop in SoHo.

Could there be other variables that are confounding this data besides location?

A: Definitely. Confounding is always a problem with observational studies. Your job as the analyst is always to think about how confounding might be affecting your results. If you think that the effect of confounders is minimal, that's great, but if there's reason to believe that they're causing problems, you need to adjust your conclusion accordingly.

What if the confounders are hidden?

That's precisely the problem. Your confounders are usually not going to scream out to you. You have to dig them up yourself as you try to make your analysis as strong as possible. In this case, we are fortunate, because the location confounder was actually represented in the data, so we can manipulate the data to manage it. Often, the confounder information won't be there, which seriously undermines the ability of the entire study to give you useful conclusions.

How far should I go to figure out what the confounders are?

A: It's really more art than science. You should ask yourself commonsense questions about what it is you're studying to imagine what variables might be confounding your results. As with everything in data analysis and statistics, no matter how fancy your quantitative techniques are, it's always really important that your conclusions make sense. If your conclusions make sense, and you've thoroughly searched for confounders, you've done all you can do for observational studies. Other types of studies, as you'll see, enable you to draw some more ambitious conclusions.

Is it possible that location wouldn't be a confounder in this same data if I were looking at something besides value perception?

Definitely. Remember, location being a confounder makes sense in this context, but it might not make sense in another context. We have no reason to believe, for example, that people's feelings about whether their coffee temperature is right vary from place to place.

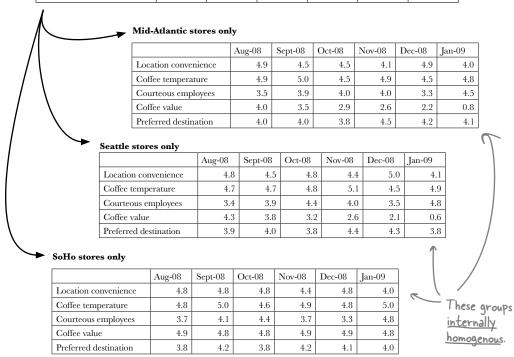
Q: I'm still feeling like observational studies have big problems.

A: There are big limitations with observational studies. This particular study has been useful to you in terms of understanding Starbuzz customers better, and when you control for location in the data the study will be even more powerful.

Manage confounders by breaking the data into chunks

To get your observational study confounders **under control**, sometimes it's a good idea to divide your groups into smaller chunks.

These smaller chunks are more **homogenous**. In other words, they don't have the internal variation that might skew your results and give you the wrong ideas.


Here is the Starbuzz survey data once again, this time with tables to represent other regions.

Here's the original data summary.

Starbuzz Coffee: All stores

Summary of marketing surveys for six months ending January 2009. The figures represents the average score given to each statement by survey respondents from participating stores.

	Aug-08	Sept-08	Oct-08	Nov-08	Dec-08	Jan-09
Location convenience	4.7	4.6	4.7	4.2	4.8	4.2
Coffee temperature	4.9	4.9	4.7	4.9	4.7	4.9
Courteous employees	3.6	4.1	4.2	3.9	3.5	4.6
Coffee value	4.3	3.9	3.7	3.5	3.0	2.1
Preferred destination	3.9	4.2	3.7	4.3	4.3	3.9

Take a look at the data on the facing page, which has been broken into groups. $\,$

How much of a difference is there between the Mid-Atlantic store subgroup average scores and the average scores for all the Starbuzz stores?
······································
How does perceived coffee value compare among all the groups?
Was the SoHo manager right about her customers being happy with the value of Starbuzz coffee?
······································

When you looked at the survey data that had been grouped by location, what did you see?

How much of a difference is there between the Mid-Atlantic store subgroup average scores and the average scores for all the Starbuzz stores? All the scores wiggle around in the same narrow range, except for the value perception score. Value
perception just falls off a cliff in the Mid-Atlantic region compared to the all-region average!
How does perceived coffee value compare among all the groups? Seattle has a precipitous drop, just like the Mid-Atlantic region. Solto, on the other hand, appears
to be doing just fine. Sollo's value perception scores beat the all-region average handily. It looks like
the customers in this region are pretty pleased with Starbuzz's value.
Was the SoHo manager right about her customers being happy with the value of Starbuzz coffee?
The data definitely confirm the Solto manager's beliefs about what her customers think about
Starbuzz's value. It was certainly a good idea to listen to her feedback and look at the data in a
different way because of that feedback.

It's worse than we thought!

The big guns have all come out to deal with the problems you've identified.

Chief Financial Officer

CFO: This situation is worse than we had anticipated, by a long shot. The value perception in our regions other than SoHo has absolutely fallen through the floor.

Marketing: That's right. The first table, which showed all the regions together, actually made the value perception look *better* than it is. SoHo skewed the averages upward.

CFO: When you break out SoHo, where everyone's rich, you can see that SoHo customers are pleased with the prices but that everyone else is about to jump ship, if they haven't already.

Marketing: So we need to figure out what to do.

CFO: I'll tell you what to do. Slash prices.

Marketing: What?!?

CFO: You heard me. We slash prices. Then people will see it as a better value.

Marketing: I don't know what planet you're from, but we have a brand to worry about.

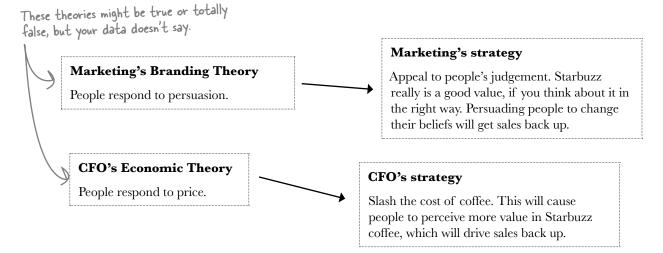
CFO: I come from Planet Business, and we call this supply and demand. You might want to go back to school to learn what those words mean. Cut prices and demand goes up.

Marketing: We might get a jump in sales in the short term, but we'll be sacrificing our profit margins forever if we cut costs. We need to figure out a way to *persuade* people that Starbuzz is a value and keep prices the same.

CFO: This is insane. I'm talking economics. Money. People respond to incentives. Your fluffy little ideas won't get us out of *this* jam.

Is there anything in the data you have that tells you which strategy will increase sales?

You need an experiment to say which strategy will work best


Look again at that last question on the previous page:

Is there anything in the data you have that tells you which strategy will increase sales?

Observational data by itself can't tell you what will happen in the future.

You have no observational data that will tell you what will happen if you try out what either the VP of Marketing or the CFO suggests.

If you want to draw conclusions about things that overlap with your data but aren't completely described in the data, you need **theory** to make the connection.

You have no data to support either of these theories, no matter how passionately the others believe in them and in the strategies that follow from them.

In order to get more clarity about which strategy is better, you're going to need to run an **experiment**.

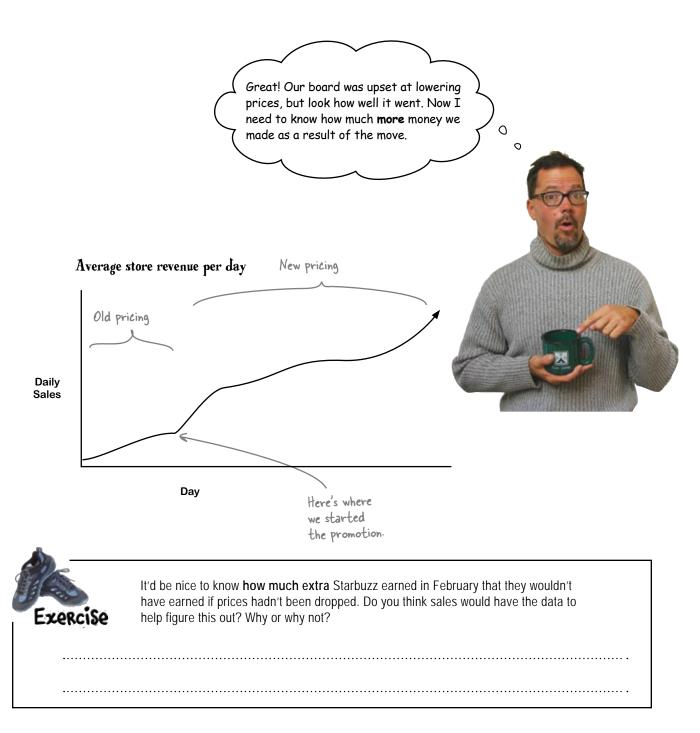
You need to experiment with these strategies in order to know which will increase sales. I've run out of patience. I like CFO's argument. Cut prices and see what happens.

The Starbuzz CEO is in a big hurry

And he's going to pull the trigger whether you're ready or not!

Let's see how his gambit works out...

Starbuzz drops its prices


Taking a cue from the CFO, the CEO ordered a price drop across the board for the month of February. All prices in all Starbuzz stores are reduced by \$0.25.

Will this change create a spike in sales?

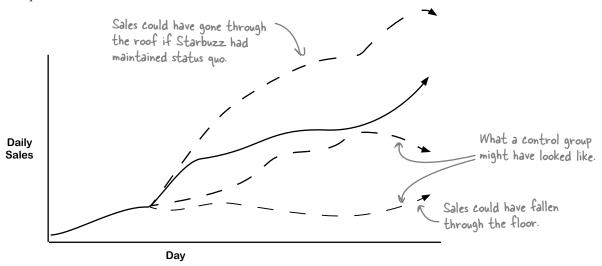
How will you know?

One month later...

Does sales have the data that would help you figure out how much more money you made off the cheaper \$3.75 coffee?

Sales couldn't have the data. They only have data for \$3.75 coffee and they can't compare that

data to hypothetical data about what kind of revenue \$4.00 coffee would have brought them.


Control groups give you a baseline

You have **no idea** how much extra you made. Sales could have skyrocketed relative to what they would have been had the CEO not cut prices. Or they could have plummeted. You just don't know.

You don't know because by slashing prices across the board the CEO failed to follow the **method of comparison**. Good experiments always have a **control group** that enables the analyst to compare what you want to test with the status quo.

Scholar's Corner

Control group A group of treatment subjects that represent the status quo, not receiving any new treatment.

No control group means no comparison. No comparison means no idea what happened.

there are no **Dumb Questions**

Can't we compare February's sales with January's sales?

A: Sure, and if all you're interested in is whether sales in February are higher than January, you'll have your answer. But without a control, the data doesn't say whether your price-cutting had anything to do with it.

What about comparing this February's sales with last year's February's sales?

A: In this question and the last one you're talking about using historical controls, where you take past data and treat it as the control, as opposed to contemporaneous controls, where your control group has its experience at the same time as your experimental group. Historical controls usually tend to favor the success of whatever it is you're trying to test because it's so hard to select a control that is really like the group you're testing. In general, you should be suspicious of historical controls.

Do you always need a control? Is there ever a case where you can get by without one?

A: A lot of events in the world can't be controlled. Say you're voting in an election: you can't elect two candidates simultaneously, see which one fares better relative to the other, and then go back and

elect the one that is more successful. That's just not how elections work, and it doesn't mean that you can't analyze the implications of one choice over the other. But if you *could* run an experiment like that you'd be able to get a lot more confidence in your choice!

What about medical tests? Say you want to try out a new drug and are pretty sure it works. Wouldn't you just be letting people be sick or die if you stuck them in a control group that didn't receive treatment?

A: That's a good question with a legitimate ethical concern. Medical studies that lack controls (or use historical controls) have very often favored treatments that are later shown by contemporaneous controlled experiment to have no effect or even be harmful. No matter what your feelings are about a medical treatment, you don't really know that it's better than nothing until you do the controlled experiment. In the worst case, you could end up promoting a treatment that actually hurts people.

Like the practice of bleeding people when they were sick?

A: Exactly. In fact, some of the first controlled experiments in history compared medical bleeding against just letting people be. Bleeding was a frankly disgusting practice that persisted for hundreds of years. We know now that it was the wrong thing to do because of controlled experiments.

Q: Do observational studies have controls?

They sure do. Remember the definition of observational studies: they're studies where the subjects themselves decide what group they're in, rather than having you decide it. If you wanted to do a study on smoking, for example, you couldn't tell some people to be smokers and some people not to be smokers. People decide issues like smoking on their own, and in this case, people who chose to be nonsmokers would be the control group of your observational study.

I've been in all sorts of situations where sales have trended upwards in one month because we supposedly did something in the previous month. And everyone feels good because we supposedly did well. But you're saying that we have no idea whether we did well?

A: Maybe you did. There's definitely a place for gut instincts in business, and sometimes you can't do controlled experiments and have to rely on observational data-based judgements. But if you can do an experiment, do it. There's nothing like hard data to supplement your judgement and instincts when you make decisions. In this case, you don't have the hard data yet, but you have a CEO that expects answers.

The CEO still wants to know how much extra money the new strategy made...
How will you answer his request?

Jim: The CEO asked us to figure out how much money we made in February that we wouldn't have made if we hadn't cut costs. We need to give the guy an answer.

Frank: Well, the answer is a problem. We have no idea how much extra money we made. It could have been a lot, but we could have lost money. Basically, we've fallen flat on our faces. We're screwed.

Joe: No way. We can definitely compare the revenue to historical controls. It might not be statistically perfect, but he'll be happy. That's all that counts.

Frank: A happy client is all that counts? Sounds like you want us to sacrifice the war to win the day. If we give him the wrong answers, it'll eventually come back on us.

Joe: Whatever.

Frank: We're going to have to give it to him straight, and it won't be pretty.

Jim: Look, we're actually in good shape here. All we have to do is set up a control group for March and run the experiment again.

Frank: But the CEO is feeling good about what happened in February, and that's because he has the wrong idea about what happened. We need to disabuse him of that good feeling.

Jim: I think we can get him thinking clearly without being downers about it.

Not getting fired 101

Having to deliver bad news is part of being a data analyst. But there are a bunch of different ways of going about delivering the same information.

Let's get straight to the point. How do you present bad news without getting fired?

We've blown our brains out. Catastrophic meltdown. Please don't fire me.

You're right! Sales are rocking and rolling. We're up 100%. You're a genius!

Option 1: There is no bad news.

Option 2: The news is bad, so let's panic!

The best data analysts know the right way to deliver potentially upsetting messages.

This event doesn't give us the information we want, but the good news is that I know how we fix it.

Option 3: There's bad news, but if we use it correctly it's good news.

Which of these approaches won't get you fired...

Today?

Tomorrow?

For your next gig?

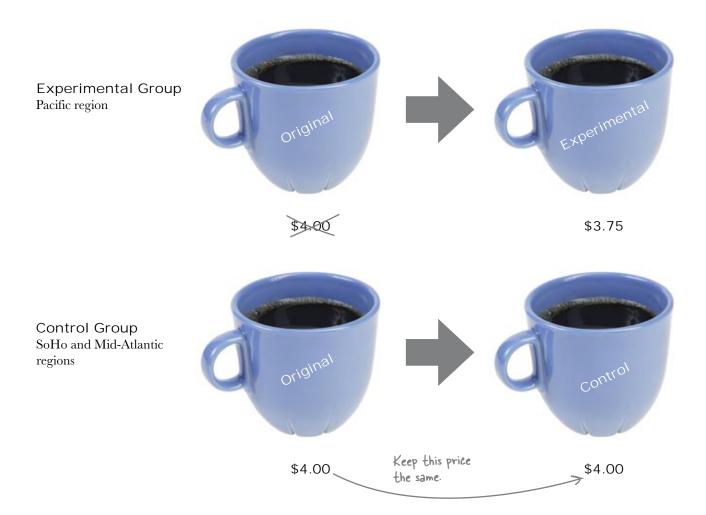
for real!

Let's experiment again

We're running the experiment again for the month of March. This time, Marketing divided the universe of Starbuzz stores into control and experimental groups.

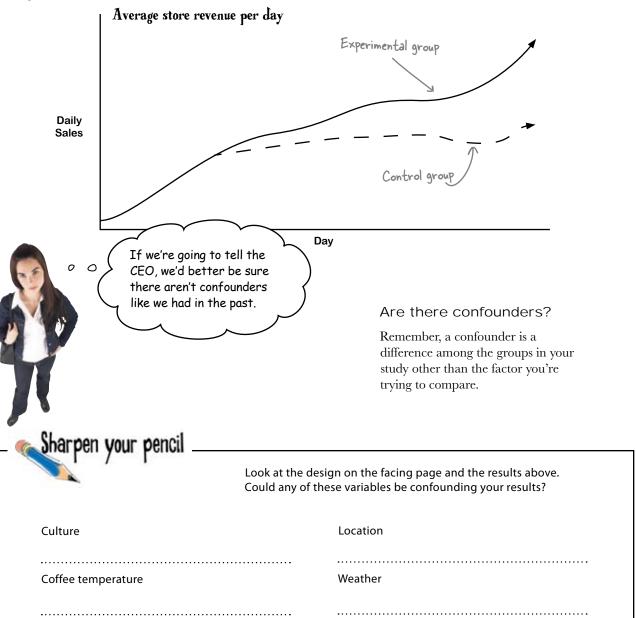
The experimental group consists of stores from the Pacific region, and the control group consists of stores from the SoHo and Mid-Atlantic regions.

From: CEO, Starbuzz


To: Head First

Subject: Need to re-run experiment

I get the picture. We still have two months before the board meeting. Just do what you need to do and get


it right this time.

That was a close one!

One month later...

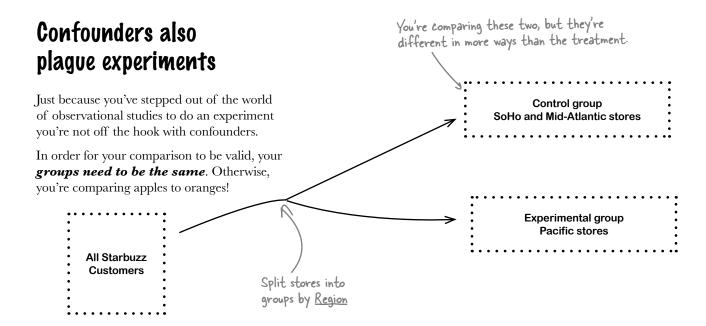
Things aren't looking half bad! Your experiment might have given you the answer you want about the effectiveness of price cutting.

Is it possible that these variables are confounding your results?

Culture

The culture ought to be the same all over.

Coffee temperature

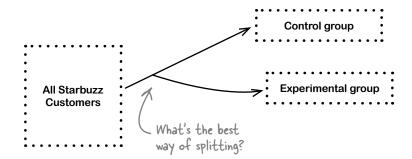

This should be the same everywhere, too.

Location

Location could definitely confound.

Weather

Could be! Weather is part of location.



Confounding Up Close

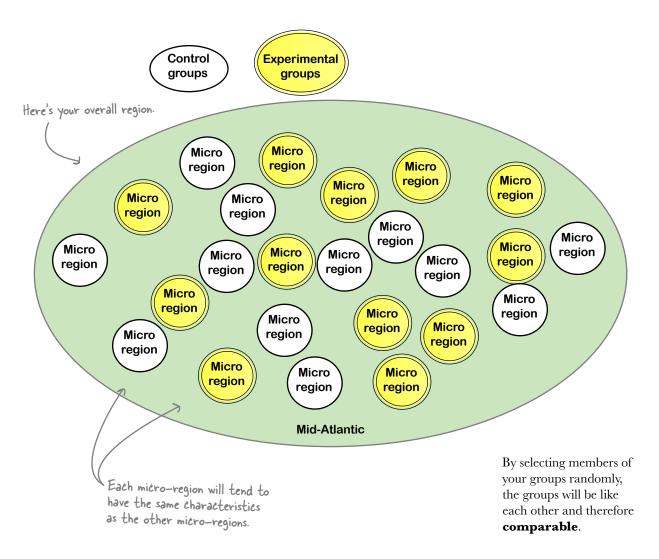
Your results show your experimental group making more revenue. It could be because people spend more when the coffee cost less. But **since the groups aren't comparable**, it could be for any number of other reasons. The weather could be keeping people on the east coast indoors. The economy could have taken off in the Pacific region. What happened? You'll never know, because of **confounders**.

Avoid confounders by selecting groups carefully

Just as it was with observational studies, avoiding confounders is all about splitting the stores into groups correctly. But how do you do it?

and poil your perion	Here are four methods for selecting groups. How do you think each will fare as a method for avoiding confounders. Which one do you think will work best?
Charge every other customer differently as they check out. That way, half of your	
customers are experimental, half are control, and location isn't a confounder.	
Use historical controls, making all the stores the control group this month and	
all the stores the experimental group next month.	
Randomly assign different stores to control and experimental groups.	
Divide big geographic regions into small ones and randomly assign the micro-	
regions to control and experimental groups.	

Which method for selecting groups do you think is best?


Charge every other customer differently as they check out. That way, half of your	The customers would freak out. Who wants to have to pay
customers are experimental, half are control, and location isn't a confounder.	more than the person standing next to them? Customer
	anger would confound your results.
Use historical controls, making all the stores the control group this month and all the stores the experimental group next month.	We've already seen why historical controls are a problem. Who
	knows what could happen on the different months to throw
	off results?
Randomly assign different stores to control and experimental groups.	This looks kind of promising, but it doesn't quite fit the bill.
	People would just go to the cheaper Starbuzz outlets rather
	than the control group. Location would still confound
Divide big geographic regions into small ones and randomly assign the micro-	If your regions were big enough that people wouldn't travel to
regions to control and experimental groups.	get cheaper coffee, but small enough to be similar to each other,
3. 2 aps.	you could avoid location confounding. This is the best bet

Looks like there is something to this randomization method. Let's take a closer look...

Randomization selects similar groups

Randomly selecting members from your pool of subjects is a great way to avoid confounders.

What ends up happening when you randomly assign subjects to groups is this: the factors that might otherwise become confounders end up getting **equal representation** among your control and experimental groups.

Head First: Randomness, thank you for joining us. You're evidently a big deal in data analysis and it's great to have you.

Randomness: Well, my schedule from one second to the next is kind of open. I have no real plan per se. My being here is, well, like the roll of the dice.

Head First: Interesting. So you have no real plan or vision for how you do things?

Randomness: That's right. Willy-nilly is how I roll.

Head First: So why are you useful in experimental design? Isn't data analysis all about order and method?

Randomness: When an analyst uses my power to select which experimental and control groups people or stores (or whatever) go into, my black magic makes the resulting groups the same as each other. I can even handle hidden confounders, no problem.

Head First: How's that?

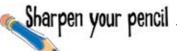
Randomness: Say half of your population is subject to a hidden confounder, called Factor X. Scary, right? Factor X could mess up your results big time. You don't know what it is, and you don't have any data on it. But it's there, waiting to pounce.

Head First: But that's always a risk in observational studies.

Randomness: Sure, but say in your experiment you use me to divide your population into experimental and control groups. What'll happen is that your two groups will end up both containing Factor X to the same degree. If half of your overall

population has it, then half of each of your groups will have it. That's the power of randomization.

Head First: So Factor X may still affect your results, but it'll affect both groups in the exact same way, which means you can have a valid comparison in terms of whatever it is you're testing for?


Randomness: Exactly. Randomized controlled is the gold standard for experiments. You can do analysis without it, but if you have it at your disposal you're going to do the best work. Randomized controlled experiments get you as close as you can get to the holy grail of data analysis: demonstrating causal relationships.

Head First: You mean that randomized controlled experiments can *prove* causal relationships?

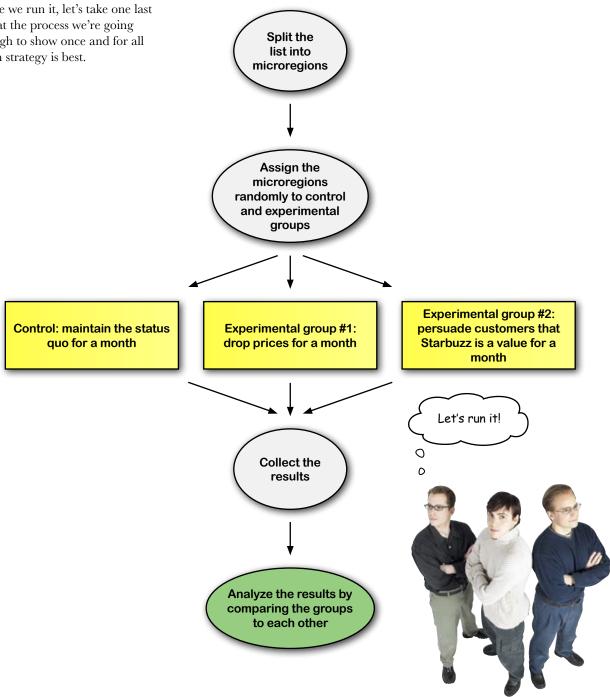
Randomness: Well, "proof" is a very, very strong word. I'd avoid it. But think about what randomized controlled experiments get you. You're testing two groups that are identical in every way except in the variable you're testing. If there's any difference in the outcome between the groups, how could it be anything besides that variable?

Head First: So how do I do randomness? Say I have a spreadsheet list I want to split in half, selecting the members of the list randomly. How do I do it?

Randomness: Easy. In your spreadsheet program, create a column called "Random" and type this formula into the first cell: =RAND(). Copy and paste the formula for each member of your list. Then sort your list by your "Random" column. That's it! You can then divide your list into your control group and as many experimental groups as you need, and you're good to go!

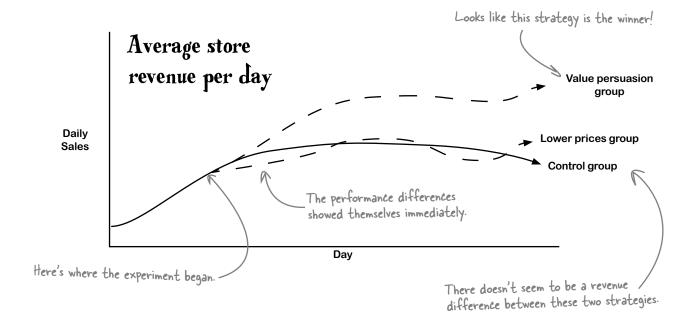
It's time to design your experiment. Now that you understand observational and experimental studies, control and experimental groups, confounding, and randomization, you should be able to design just the experiment to tell you what you want to know.

	want to know.	experiment to ten you what you
What are you trying to demonstrate?	? Why?	
		·······
		······································
		······································
What are your control and experime	ntal groups going to be?	
		.
How will you avoid confounders?		······································
,		
•••••		Hey! You should add an experimental group
•••••		····/ for persuading people that
		Starbuzz is a good value. The
		···· way we'll know who's right—n or the CFO!
Vhat will your results look like?		



You've just designed your first randomized controlled experiment. Will it work as you had hoped?

What are you trying to demonstrate? Why?
The purpose of the experiment is to figure out which will do a better job of increasing sales:
maintaining the status quo, cutting prices, or trying to persuade customers that Starbuzz coffee is a
good value. We're going to run the experiment over the course of one month: March.
What are your control and experimental groups going to be?
The control group will be stores that are functioning as they always function—no specials or
anything. One experimental group will consist of stores that have a price drop for March. The other
experimental group will consist of stores where employees try to persuade customers that Starbuzz is
a good value. How will you avoid confounders?
By selecting groups carefully. We're going to divide each major Starbuzz region into micro-regions,
and we'll randomly assign members of that pool of micro-regions to the control and experimental
groups. That way, our three groups will be about the same.
What will your results look like?
It's impossible to know until we run the experiment, but what might happen is that one or both of the
experimental groups shows higher sales than the control group.


Your experiment is ready to go

Before we run it, let's take one last look at the process we're going through to show once and for all which strategy is best.

The results are in

Starbuzz set up your experiment and let it run over the course of several weeks. The daily revenue levels for the value persuasion group immediately went up compared to the other two groups, and the revenue for the lower prices group actually matched the control.

This chart is so useful because it makes an excellent **comparison**. You selected identical groups and gave them separate treatments, so now you can really attribute the differences in revenue from these stores to the factors you're testing.

These are great results!

Value persuasion appears to result in significantly higher sales than either lowering prices or doing nothing. It looks like you have your answer.

Starbuzz has an empirically tested sales strategy

When you started this adventure in experiments, Starbuzz was in disarray. You carefully evaluated observational survey data and learned more about the business from several bright people at Starbuzz, which led you to create a **randomized controlled experiment**.

That experiment made a powerful **comparison**, which showed that persuading people that Starbuzz coffee is a more effective way to increase sales than lowering prices and doing nothing.

I'm really happy about this finding!
I'm giving the order to implement
this strategy in all our stores. Except
for the SoHo stores. If the SoHo
customers are happy to spend more,
let them!

3 optimization

Take it to the max *

We all want more of something.

And we're always trying to figure out how to get it. *If* the things we want more of—profit, money, efficiency, speed—can be represented numerically, then chances are, there's an tool of data analysis to help us tweak our *decision variables*, which will help us find the **solution** or *optimal point* where we get the most of what we want. In this chapter, you'll be using one of those tools and the powerful spreadsheet **Solver** package that implements it.

You're now in the bath toy game

You've been hired by Bathing Friends Unlimited, one of the country's premier manufactures of rubber duckies and fish for bath-time entertainment purposes. Believe it or not, bath toys are a serious and profitable business.

They want to make more money, and they hear that managing their business through data analysis is all the rage, so they called you! The rubber fish is an unconventional choice, but it's been a big seller.

Some call it the classic, some say it's

too obvious, but one thing is clear:
the rubber ducky is here to stay.

I'll give your firm top
consideration as I make
my toy purchases this
year.

Duckies make
me giggle.

You have demanding, discerning customers.

Here's an email from your client at Bathing Friends Unlimited, describing why they hired you.

From: Bathing Friends Unlimited

To: Head First

Subject: Requested analysis of product mix

Dear Analyst,

We're excited to have you!

We want to be as profitable as possible, and in order to get our profits up, we need to make sure we're making the right amount of ducks and the right amount of fish. What we need you to help us figure out is our ideal *product mix*: how much of each should we manufacture?

Looking forward to your work. We've heard great things.

Regards,

BFU

Here's what your client says about what she needs.

What <i>data</i> do you need to solve this problem?	
	······································
	······································

Sharpen your pencil Solution

From: Bathing Friends Unlimited To: Head First

Subject: Requested analysis of product mix

Dear Analyst,

We're excited to have you!

We want to be as profitable as possible, and in order to get our profits up we need to make sure we're making the right amount of ducks and the right amount of fish. What we need you to help us figure out is our ideal product mix: how much of each should we manufacture?

Looking forward to your work. We've heard great things.

Regards,

BFU

What data do you need to solve this problem?

First of all, it'd be nice to have data on just how profitable ducks

and fish are. Is one more profitable than the other? But more than

that, it'd be nice to know what other factors constrain the problem.

How much rubber does it take make these products? And how much

time does it take to manufacture these products?

Your Data Needs Up Close

Take a closer look at what you need to know. You can divide those data needs into two categories: **things you can't control**, and things you can.

These are things you can't control.

- How profitable fish are
 - How much rubber they have to make fish
- How much rubber they have to make ducks
- How profitable ducks are
- How much time it takes to make fish
- How much time it takes to make ducks

And the basic thing the client wants you to find out in order to get the profit as high as possible. Ultimately, the answers to these two questions you **can control**.

These are things you can control.

- How many fish to make
- How many ducks to make

You need the hard numbers on what you can and can't control.

Constraints limit the variables you control

These considerations are called **constraints**, because they will define the parameters for your problem. What you're ultimately after is *profit*, and finding the right product mix is how you'll determine the right level of profitability for next month.

But your options for product mix will be *limited* by your constraints.

These are your actual constraints for this problem.

Pecision variables are things you can control

Constraints don't tell you how to maximize profit; they only tell you what you *can't* do to maximize profit.

Decision variables, on the other hand, are the things you *can* control. You get to choose how many ducks and fish will be manufactured, and as long as your constraints are met, your job is to choose the combination that creates the most profit.

From: Bathing Friends Unlimited

To: Head First

Subject: Potentially useful info

Dear Analyst,

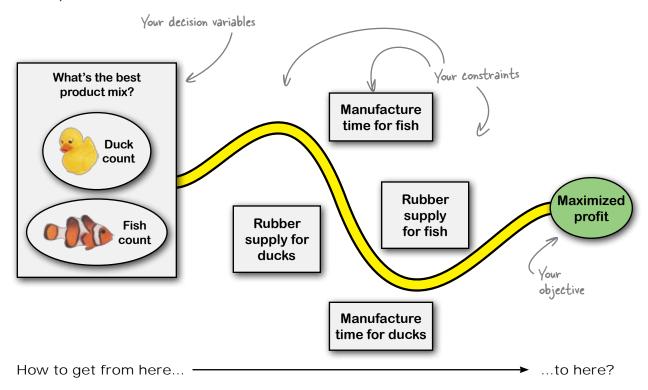

Great questions. Re rubber supply: we have enough rubber to manufacture 500 ducks or 400 fish. If we did make 400 fish, we wouldn't have any rubber to make ducks, and vice versa.

We have time to make 400 ducks or 300 fish. That has to do with the time it takes to set the rubber. No matter what the product mix is, we can't make more than 400 ducks and 300 fish if we want the product on shelves next month.

Finally, each duck makes us \$5 in profit, and each fish makes us \$4 in profit. Does that help?

Regards,

BFU

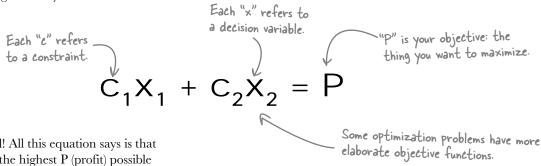


So, what do you think you *do* with constraints and decision variables to figure out how to maximize profit?

You have an optimization problem

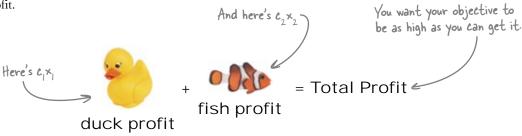
When you want to get as much (or as little) of something as possible, and the way you'll get it is by changing the values of other quantities, you have an **optimization problem**.

Here you want to maximize *profit* by changing your decision variables: the number of ducks and fish you manufacture.


But to maximize profit, you have to stay within your constraints: the manufacture time and rubber supply for both toys.

To solve an optimization problem, you need to combine your decision variables, constraints, and the thing you want to maximize together into an **objective function**.

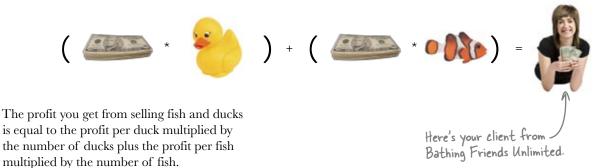
Find your objective with the objective function


The **objective** is the thing you want to maximize or minimize, and you use the **objective function** to find the optimum result.

Here's what your objective function looks like, if you state it algebraically:

Don't be scared! All this equation says is that you should get the highest P (profit) possible by multiplying each decision variable by a constraint.

Your constraints and decision variables in this equation combine to become the profit of ducks and fish, and those together form your objective: the total profit.


All optimization problems have constraints and an objective function.

What specific values do you think you should use for the constraints, c_1 and c_2 ?

Your objective function

The constraints that you need to put into your objective function are the **profit for each toy**. Here's another way to look at that algebraic function:

Now you can start trying out some product mixes. You can fill in this equation with the values you know represent the profit per item along with some hypothetical count amounts.

$$\left(\begin{array}{ccc} \$5 \text{ profit} & * & 100 \\ \text{ducks} & \end{array}\right) + \left(\begin{array}{ccc} \$4 \text{ profit} & * & 50 \\ \text{fish} & \end{array}\right) = \$700$$

This objective function projects a \$700 profit for *next month*. We'll use the objective function to try out a number of other product mixes, too.

Hey! What about all those other constraints?
Like rubber and time?

This is what your profit would

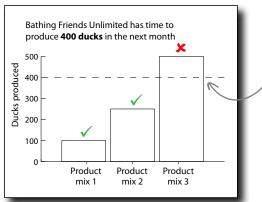
be if you decide to make

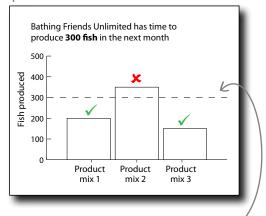
100 ducks and 50 fish.

Show product mixes with your other constraints

Rubber and time place limits on the count of fish you can manufacture, and the best way to start thinking about these constraints is to envision different hypothetical **product mixes**. Let's start with the constraint of *time*.

Here's what they say about their time constraint.


A hypothetical "Product mix 1" might be where you manufacture 100 ducks and 200 fish. You can plot the time constraints for that product mix (and two others) on these bar graphs.


ducks, and vice versa.

We have time to make 400 ducks or 300 fish. That has to do with the time it takes to set the rubber. No matter what the product mix is, we can't make more than 400 ducks and 300 fish if we want the product on shelves next month.

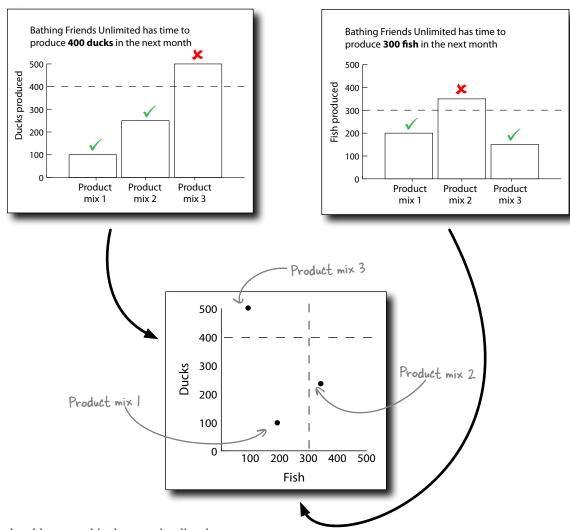
14 hally, each duck makes us \$5 in profit,

This line shows the maximum number of ducks you can produce.

This line shows how many fish you have time to produce.

Product mix 1 doesn't violate any constraints, but the other two do: product mix 2 has too many fish, and product mix 3 has too many ducks.

Seeing the constraints in this way is progress, but we need a better visualization. We have yet more constraints to manage, and it'd be clearer if we could view them **both** on a single chart.

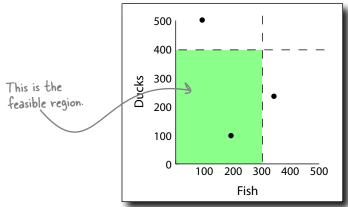


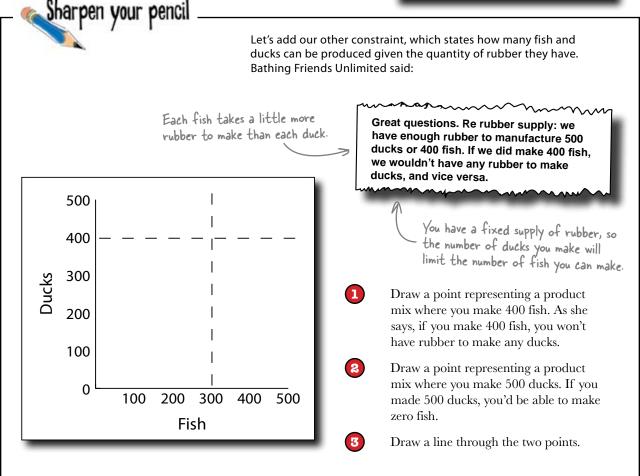
BRAIN BARBELL

How would you visualize the constraints on hypothetical product mixes of ducks *and* fish with one chart?

Plot multiple constraints on the same chart

We can plot both time constraints on a single chart, representing each product mix with a dot rather than a bar. The resulting chart makes it easy to **visualize both time constraints together**.

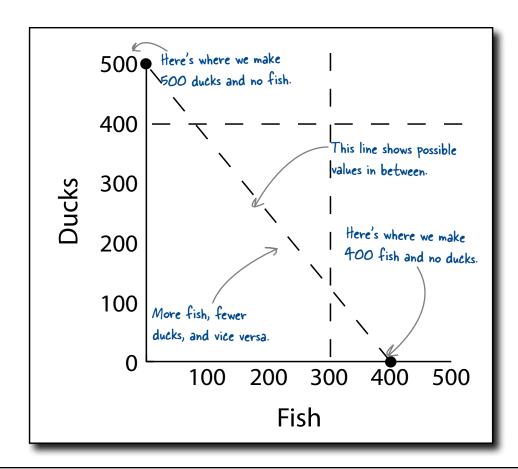



We'll also be able to use this chart to visualize the rubber constraints. In fact, you can place **any number of constraints** on this chart and get an idea of what product mixes are possible.

Your good options are all in the feasible region

Plotting ducks on a y-axis and fish on an x-axis makes it easy to see what product mixes are *feasible*. In fact, the space where product mixes are within the constraint lines is called the **feasible region**.

When you add constraints to your chart, the feasible region will change, and you'll use the feasible region to figure out which point is *optimal*.

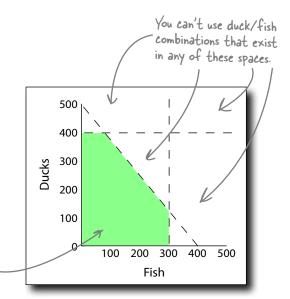


Sharpen your pencil Solution

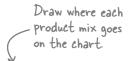
How does the new constraint look on your chart?

- Draw a point representing a product mix where you make 400 fish. As she says, if you make 400 fish, you won't have rubber to make any ducks.
- Draw a point representing a product mix where you make 500 ducks. If you made 500 ducks, you'd be able to make zero fish.
- Draw a line through the two points.

Great questions. Re rubber supply: we have enough rubber to manufacture 500 ducks or 400 fish. If we did make 400 fish, we wouldn't have any rubber to make ducks, and vice versa.



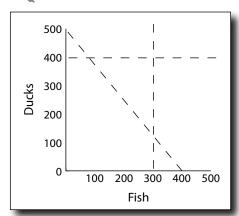
Your new constraint changed the feasible region


When you added the rubber constraint, you **changed the shape** of the feasible region.

Before you added the constraint, you might have been able to make, say, 400 ducks and 300 fish. But now your rubber scarcity has ruled out that product mix as a possibility.

Your potential product mixes all need to be inside here.

Sharpen your pencil



Use your objective function

Here are some possible product mixes.

Are they inside the feasible region? Draw a dot for each product mix on the chart.

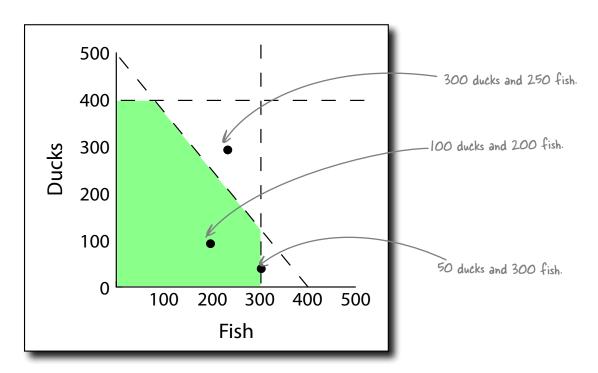
How much profit will the different product mixes create? Use the equation below to determine the profit for each.

300 ducks and 250 fish

Profit:

100 ducks and 200 fish

Profit:


50 ducks and 300 fish

Profit:

to determine profit.

You just graphed and calculated the profit for three different product mixes of ducks and fish. What did you find?

300 ducks and 250 fish.

Profit: (\$5 profit*300 ducks)+(\$4 profit*250 fish) = \$2500

Too bad this product mix isn't in the feasible region.

100 ducks and 200 fish.

Profit: (\$5 profit*100 ducks)+(\$4 profit*200 fish) = \$1300

This product mix definitely works.

50 ducks and 300 fish.

Profit: (\$5 profit*50 ducks)+(\$4 profit*300 fish) = \$1450

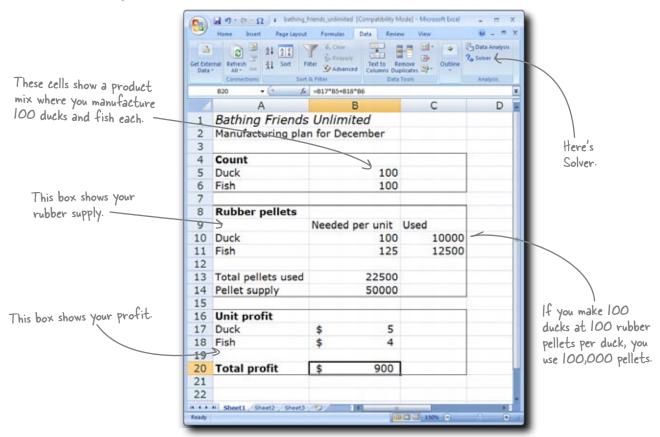
This product mix works and makes even more money.

Now all you have to do is try every possible product mix and see which one has the most profit, right?

Even in the small space of the feasible region there are tons and tons of possible product mixes.

There's no way you're going to get me to try them all.

You don't have to try them all.


Because both Microsoft Excel and OpenOffice have a handy little function that makes short order of optimization problems. Just turn the page to find out how...

Your spreadsheet does optimization

Microsoft Excel and OpenOffice both have a handy little utility called **Solver** that can make short order of your optimization problems.

If you plug in the constraints and write the objective function, Solver does the algebra for you. Take a look at this spreadsheet, which describes all the information you received from Bathing Friends Unlimited.



There are a few simple formulas on this spreadsheet. First, here are some numbers to quantify your rubber needs. The bath toys are made out of rubber pellets, and cells B10:B11 have formulas that calculate how many pellets you need.

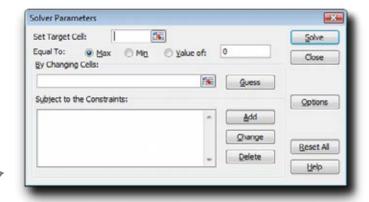
Second, cell B20 has a formula that multiplies the count of fish and ducks by the profit for each to get the total profit.

Take a look at Appendix iii if you use OpenOffice or if Solver isn't on your Excel menu.

Try clicking the Solver button under the Data tab. What happens?

Let's take a look at the Solver dialogue box and figure out how it works with the concepts you've learned.

Draw an arrow from each element to where it goes in the Solver dialogue box.

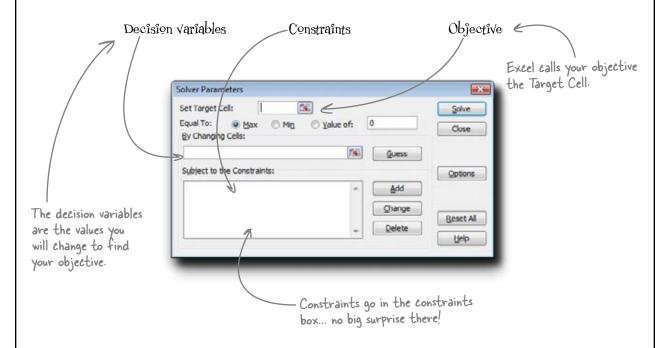

Rubber and time

Decision variables

Constraints

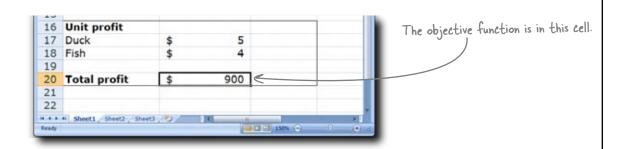
Objective

Profi


Draw an arrow from each element to where it should go on the Solver.

Where do you think the **objective function** goes?

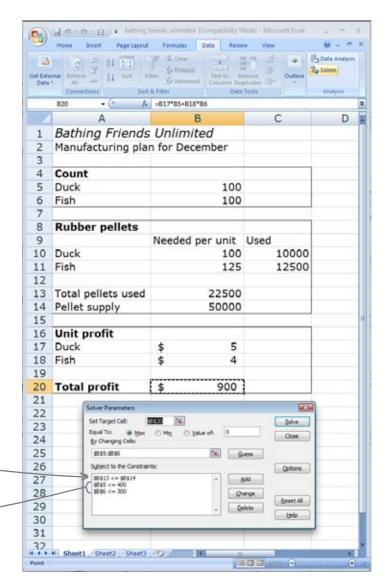
How do the spaces in the Solver dialogue box match up with the optimization concepts you've learned?


Draw an arrow from each element to where it goes in the Solver dialogue box.

Where do you think the objective function goes?

The objective function goes in a cell on the spreadsheet and returns the objective as the result.

The objective that this objective function calculates is the total profit.



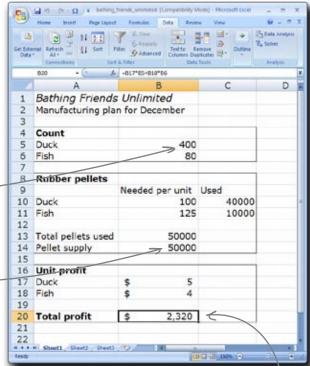
Now that you've defined your optimization model, it's time to plug the elements of it into Excel and let the Solver do your number crunching for you.

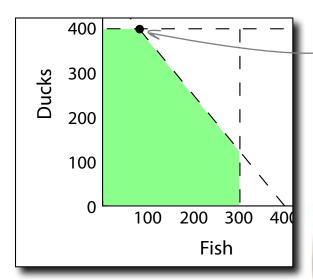
- Set your target cell to point to your objective function.
- Find your decision variables and add them to the Changing Cells blank.
- Add your constraints.
- 4 Click Solve!

Here's your rubber constraint.

Don't forget your time constraints!

What happens when you click Solve?


Solver crunched your optimization problem in a snap


Nice work. Solver took all of about a millisecond to find the solution to your optimization problem. If Bathing Friends Unlimited wants to maximize its profit, it need only manufacture 400 ducks and 80 fish.

Solver tried out a bunch of Count values and found the ones that maximize profit.

Looks like you're using all your rubber, too.

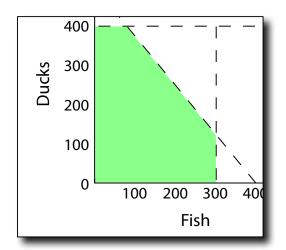
What's more, if you compare Solver's result to the graph you created, you can see that the precise point that Solver considers the best is on the outer limit of your feasible region.

Here's your solution. Here's the profit you can expect.

0

Download at Boykma.Com

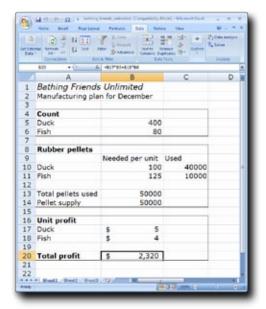
Looks like great work. Now how did you get to that solution again?


Better explain to the client what you've been up to...

		400			
	ks	300			
 	Ducks	200			
 ······································		100			\
 		0 -	100	200 30	00 4
				_	
	State Comment State Comment Co		Formation Carlos Filter Filt	Fish	Spins need Spins S
	Estrument father are as a second as a seco	a ii	Temate Dete	Wy Morine Macrosoft hard Brains View C. Brain Market Marke	S. tolor
	Estrument father are as a second as a seco	A A facturing pla	Secretary Section States Section Sec	Ny Marine - Maranach Ineri Review - Vene 	S _a tolor Analysis
	Both Bath 2 Manu 3	A A facturing pla	Security Constitution of the Constitution of t	Ny Marine - Maranach Ineri Review - Vene 	S _a tolor Analysis
	1 Bath 2 Manu 3 4 Coun 5 Duck 6 Fish 7 8 Rubb 9 10 Duck	A A facturing pla	Security Control of the Securi	In March Marcard Tariff Review Water	D
	1 Bath 2 Manu 3 4 Coun 5 Duck 6 Fish 7 8 Rubb 9 10 Duck 11 Fish 12 13 Total 14 Pellet	A A facturing pla	Security Control of the Securi	in Monte Manuari hard form when the control of the	₹ _a tolor: Anasos
	1 Bath 2 Manu 3 4 Coun 5 Duck 6 Fish 7 8 Rubb 9 10 Duck 11 Fish 12 13 Total	A ing Friends facturing plate	Needed per un 1 1 1 5000 5000 5000	in Monte Manuari hard form when the control of the	₹ _a tolor: Anasos

How did you interpret your findings to your client?

The shaded part of this graph shows all the possible duck/fish product mixes given our constraints, which are represented by the dashed lines. But this chart does not point out the solution itself.



This spreadsheet shows the product mix computed by

Excel to be the optimum. Of all possible product mixes,

manufacturing 400 ducks and 80 fish produces the

most profit while staying inside our constraints.

Profits fell through the floor

You just got this note from Bathing Friends Unlimited about the results of your analysis...

From: Bathing Friends Unlimited

To: Head First

Subject: Results of your "analysis"

Dear Analyst,

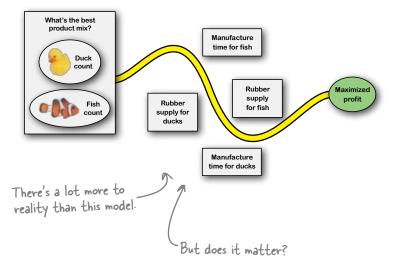
Frankly, we're shocked. We sold all 80 of the fish we produced, but we only sold 20 ducks. That means our gross profit is only \$420, which you might realize is way below the estimate you gave us of \$2,320. Clearly, we wanted something better than this.

We haven't ever had this sort of experience before with our duck sales, so for the moment we're not blaming you for this until we can do our own internal evaluation of what happened. You might want to do your own analysis, too.

Regards,

BFU

There are lots of ducks left over!


This is pretty **bad news**. The fish sold out, but no one's buying the ducks. Looks like you may have made a mistake.

Your model only describes what you put into it

Your model tells you how to maximize profits only **under the constraints you specified.**

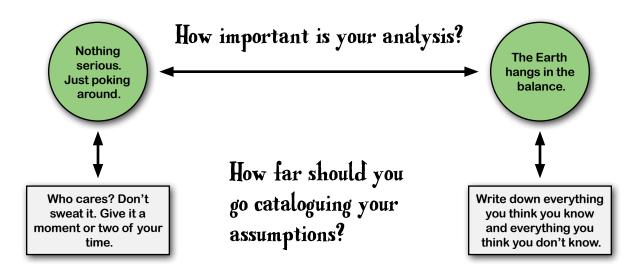
Your models approximate reality and are never perfect, and sometimes their imperfections can cause you problems.



It's a good idea to keep in mind this cheeky quote from a famous statistician:

"All models are wrong, but some are useful."

Your analytical tools inevitably simplify reality, but if your **assumptions** are accurate and your data's good the tools can be pretty reliable.


Your goal should be to create the **most useful models** you can, making the imperfections of the models unimportant relative to your analytical objectives.

Calibrate your assumptions to your analytical objectives

You can't specify all your assumptions, but if you miss an important one it could ruin your analysis.

You will always be asking yourself how far you need to go specifying assumptions. It depends on how important your analysis is.

Sharpen y	our pencil
	What assumption do you need to include in order to get your optimization model working again?
•••••	
•····	······································

Is there an assumption that would help you refine your model?

There's nothing in the current model that says what people will actually buy. The model describes
time, rubber, and profit, but in order for the model to work, people would have to buy everything
we make. But, as we saw, this isn't happening, so we need an assumption about what people will buy.

there are no Dumb Questions

What if the bad assumption were true, and people would buy everything we manufactured? Would the optimization method have worked?

A: Probably. If you can **assume** that everything you make will sell out, then maximizing your profitability is going to be largely about fine-tuning your product mix.

But what if I set up the objective function to figure out how to maximize the amount of ducks and fish we made overall? It would seem that, if everything was selling out, we'd want to figure out how to make more.

A: That's a good idea, but remember your constraints. Your contact at Bathing Friends Unlimited said that you were limited in the amount of fish and ducks you could produce by both time and rubber supply. Those are your constraints.

Optimization sounds kind of narrow. It's a tool that you only use when you have a single number that you want to maximize and some handy equations that you can use to find the right value.

A: But you can think of optimization more broadly than that. The optimizing mentality is all about figuring out what you want and carefully identifying the constraints that will affect how you are able to get it. Often, those constraints will be things you can represent quantitatively, and in that case, an algebraic software tool like Solver will work well.

So Solver will do my optimizations if my problems can be represented quantitatively.

A: A lot of quantitative problems can be handled by Solver, but Solver is a tool that specializes in problems involving *linear programming*. There are other types of optimization problems and a variety of algorithms to solve them. If you'd like to learn more, run a search on the Internet for **operations research**.

Should I use optimization to deal with this new model, will we sell people what they want?

A: Yes, if we can figure out how to incorporate people's preferences into our optimization model.

.	
Exercis	Here's some historica With this information, no one seemed intere
	pattern in the sales over time t 't sell well last month?
I	

Here's some historical sales data for rubber fish and ducks. With this information, you might be able to figure out why no one seemed interested in buying all your ducks.

www.headfirstlabs.com/books/hfda/ historical_sales_data.xls

hints at why		640		Se.			ø
		A	В	C	D	E	-
	1	Month	Year	Fish	Ducks	Total	
	2	1	2006	71	25	96	
	3	F	2006	76	29	105	Ш
	4	M	2006	73	29	102	П
	5	A	2006	81	29	110	Ш
•••••	6	M	2006	83	32	115	
	7	J	2006	25	81	106	
	8	J.	2006	35	89	124	
	9	A	2006	32	91	123	
	10	5	2006	25	87	112	
	11	0	2006	21	96	117	
	12	N	2006	113	51	164	Ш
	13	D	2006	125	49	174	
	14	J	2007	90	34	124	
	15	F	2007	91	30	121	
	16	M	2007	90	30	120	
	17	A	2007	35	97	132	
	18	M	2007	34	96	130	į,
	19	J	2007	34	97	131	
	20	J	2007	43	105	148	
<u>,</u>	21	A	2007	38	105	143	Ш
	22	5	2007	119	43	162	
	23	0	2007	134	45	179	
	24	N	2007	139	58	197	
	25	D	2007	148	60	208	
	26	J	2008	103	37	140	Ш
	27	F	2008	37	106	143	
	28	M	2008	34	103	137	Ш
	29	A	2008	45	114	159	
s?	30	M	2008	40	117	157	Ш
	31	1	2008	37	113	150	
	32	J	2008	129	48	177	Ш
	33	A	2008	127	45	172	
	34	S	2008	137	45	182	
	35	0	2008	160	56	216	
recent month,	36	N	2008	125	175		U
went wrong.	35	D	2008			338	

.....

This sales data is for the whole rub toy industry, not just BFU, so it's good indicator of what people prefutury and when they prefer to buy it

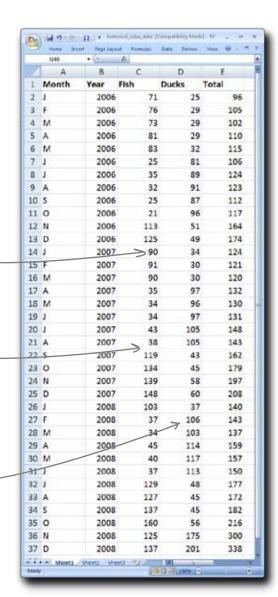
Do you see any month-to-month path

Here's the n when everyt

What do you see when you look at this new data?

Is there a pattern in the sales over time that hints at why Ducks didn't sell well last month?

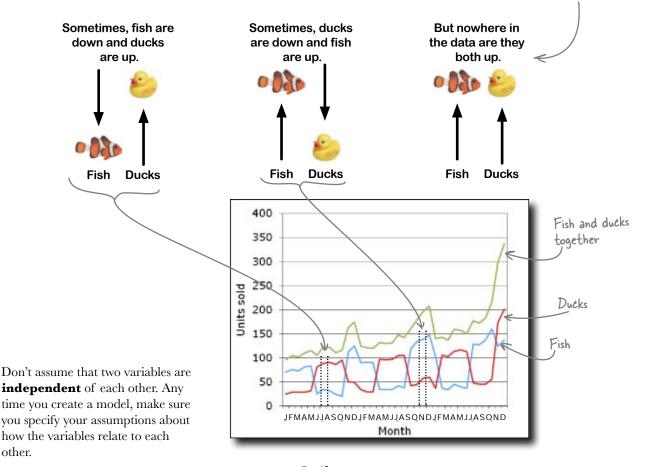
Duck sales and fish sales seem to go in opposite


directions. When one's up, the other's down. Last

month, everyone wanted fish.

There are big drops in sales every January.

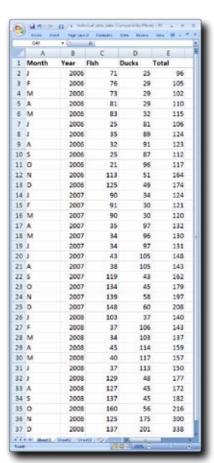
there's switch, where ducks sell well and then fish jump ahaead.

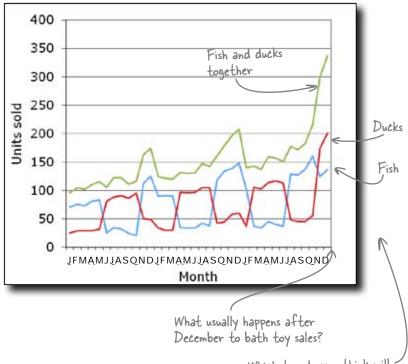

Here's another switch!

Watch out for negatively linked variables

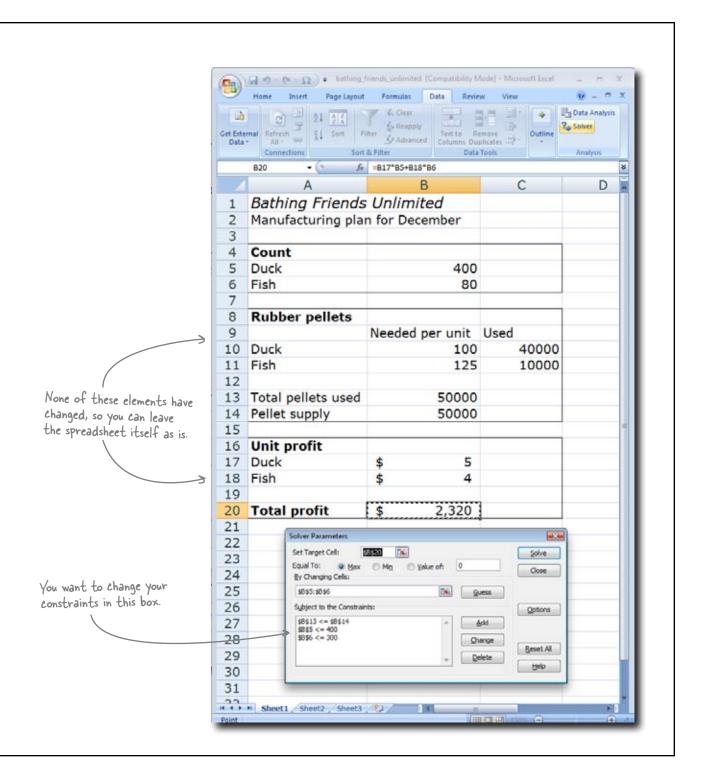
We don't know *why* rubber duck and fish sales seem to go in opposite directions from each other, but it sure looks like they are **negatively linked**. More of one means less of the other.

Together, they have an increasing trend, with holiday season sales spikes, but always one is ahead of the other.




What sort of constraint would you add to your optimization model to account for the negatively linked fish and duck sales?

You need a new constraint that **estimates demand** for ducks and fish for the month in which you hope to sell them.

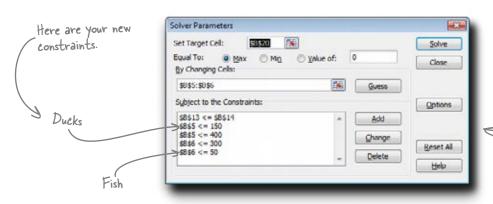

Looking at the historical sales data, estimate what you think the highest amount of sales for ducks and fish will be next month. **Assume** also that the next month will follow the trend of the months that precede it.

Run the Solver again, adding your estimates as new constraints. For both ducks and fish, what do you think is the **maximum number** of units you could hope to sell?

Which toy do you think will be on top next month?

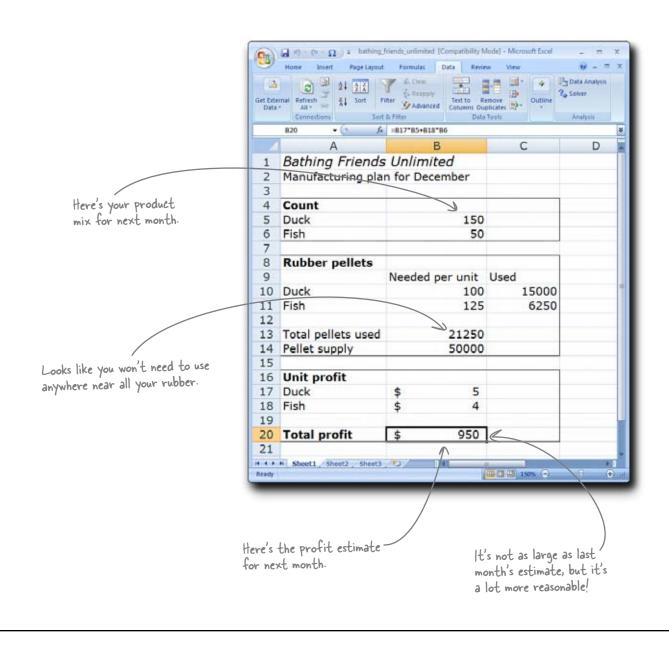
You ran your optimization model again to incorporate estimates about rubber duck and fish sales. What did you learn?

Looking at the historical sales data, estimate what you think the highest amount of sales for ducks and fish will be next month. **Assume** that the next month will be similar to the months that preceded it.


We should prepare for a big drop in January sales, and it looks like ducks will still be on top.

We probably won't be able to sell more than 150 ducks.

Ducks <


We probably won't be able to sell more than 50 fish.

Run the Solver again, adding your estimates as new constraints. For example, if you don't think that more than 50 fish will sell next month, make sure you add a constraint that tells Solver not to suggest manufacturing more than 50 fish.

Your specific numbers may vary a little... these are estimates after all.

Here's what Solver returned:

Your new plan is working like a charm

The new plan is working brilliantly. Nearly every duck and fish that comes out of their manufacturing operation is sold immediately, so they have no excess inventory and every reason to believe that the profit maximization model has them where they need to be.

Not too shabby

From: Bathing Friends Unlimited

To: Head First

Subject: Thank you!!!

Dear Analyst,

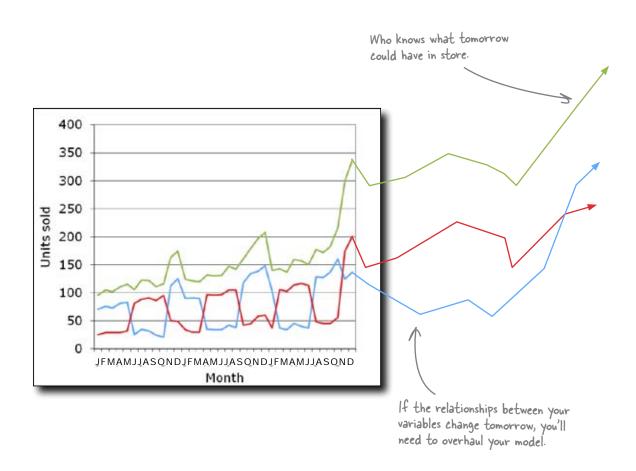
You gave us exactly what we wanted, and we really appreciate it. Not only have you optimized our profit, you've made our operations more intelligent and data-driven. We'll definitely use your model for a long time to come. Thank you!

Regards,

BFU

P.S. Please accept this little token of our appreciation, a special Head First edition of

our timeless rubber duck.



Good job! One question: the model works because you got the relationship right between duck demand and fish demand. But what if that relationship changes? What if people start buying them together, or not at all?

Your assumptions are based on an ever-changing reality

All your data is observational, and you don't know what will happen in the future.

Your model is working now, but it might break suddenly. You need to be ready and able to reframe your analysis as necessary. This perpetual, iterative framework is what analysts do.

Be ready to change your model!

4 data Visualization

Pictures make you smarter *

Now hold still... we want to get all the variables together in one shot.

You need more than a table of numbers.

Your data is brilliantly complex, with more variables than you can shake a stick at. Mulling over mounds and mounds of spreadsheets isn't just boring; it can actually be a waste of your time. A clear, highly multivariate visualization can in a small space show you the forest that you'd miss for the trees if you were just looking at spreadsheets all the time.

New Army needs to optimize their website

Home Page #2 New Army is an online clothing retailer that just ran an experiment to test web layouts. For one month, everyone who came to the website was randomly served one of these three **home** page designs. **New Army** Buy these shirts now! Men's Women's Children's Here's Home Page #1 New Army This is their control, because it's the stylesheet they've Men's Women's Children's been using up to now. Home Page #3 They had their experiment designers put together a series of tests that promise to answer a lot of their questions about their website design. What they want to do is find the best stylesheets to maximize sales and get people returning to their website.

The results are in, but the information designer is out

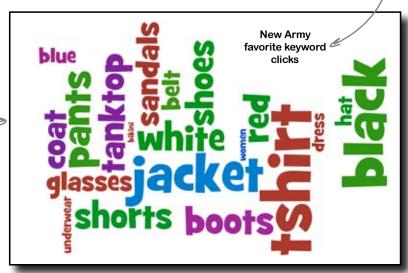
Now that they have a store of fantastic data from a controlled, randomized experiment, they need a way to visualize it all together.

So they hired a fancy **information designer** and asked him to pull together something that helped them understand the implications of their research. Unfortunately, all did not work out as planned.

We got a lot of crap back from the information designer we hired. It didn't help us understand our data at all, so he got the ax. Can you create data visualizations for us that help us build a better website?

What we want to see is which stylesheet or stylesheets maximize revenue, the time our visitors spend on the site, and return visits to the site.

You'll need to redesign the visualizations for the analysis. It could be hard work, because the experiment designers at New Army are an exacting bunch and generated **a lot of solid data**.


But before we start, let's take a look at the rejected designs. We'll likely learn something by knowing what sort of visualizations *won't* work.

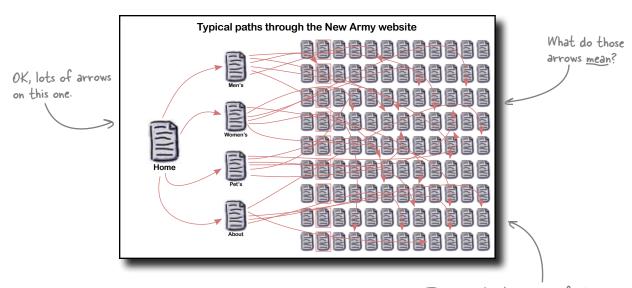
Let's take a look at the rejected designs...

The last information designer submitted these three infographics


The information designer submitted these three designs to New Army. Take a look at these designs. What are your impressions? Can you see why the client might not have been pleased?

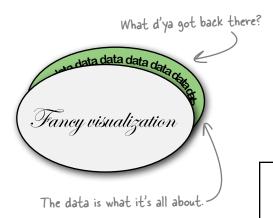
The size of the text must have something to do with the number of clicks.

You can make tag clouds like this for free at http://www.wordle.net.


Looks like this chart measures how many visits each home page got.

It seems that they're all about the same.

Keyword clicks ... what

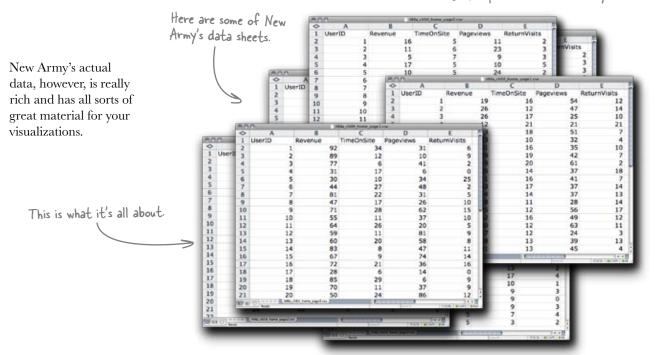

does that mean?

These visualizations are definitely flashy, but what's behind them?

What data is behind the visualizations?

"What is the data behind the visualizations?" is the very **first question** you should ask when looking at a new visualization. You care about the quality of the data and its interpretation, and you'd hate for a flashy design to get in the way of your own judgments about the analysis.

Show the data!


You can't tell from these visualizations what data is behind them. If you're the client, how could you ever expect to be able to make useful judgments with the visualizations if they don't even say clearly what data they describe?

Show the data. Your first job in creating good data visualizations is to facilitate rigorous thinking and good decision making on the part of your clients, and good data analysis begins and ends with *thinking with data*.

And these graphs are not solutions to the problems of New Army.

Here's some unsolicited advice from the last designer

You didn't ask for it, but it appears that you're getting it anyway: the outgoing information designer wants to put in his two cents about the project. Maybe his perspective help...

Well that's "nice" of him to say.

From the looks of the table on the facing page, it appears that Dan is correct.

Too much data to visualize it all, huh?

To: Head First

From: Dan's Dizzying Data Designs

Re: Website design optimization project

Dear Head First,

I want to wish you the best of luck on the New Army project. I didn't really want to do it anyway, so it's good for someone else to get a chance to give it a shot.

One word of warning: they have a lot of data. Too much, in fact. Once you really dig into it, you'll know what I mean. I say, give me a nice little tabular layout, and I'll make you a pretty chart with it. But these guys? They have more data than they know what to do with.

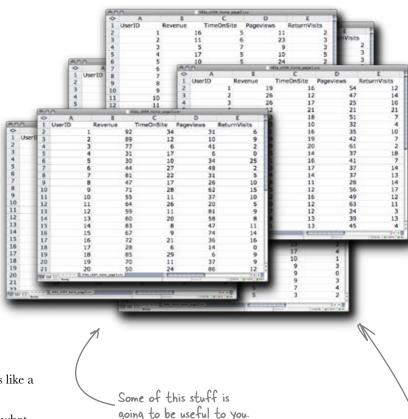
And they will expect you to make visuals of all of it for them. I just made a few nice charts, which I understand not everyone liked, but I'll tell you they've set forward an insurmountable task. They want to see it all, but there is just too much.

Dan

Dan seems to think that an excess of data is a real problem for someone trying to design good data visualizations. Do you think that what he is saying is plausible? Why or why not?		

Is Dan being reasonable when he says it's too hard to do good visualizations when there is too much data?

This isn't very plausible. The whole point of data analysis is to summarize data, and summarizing tools, like taking the average of a number, will work regardless of whether you have just a few data points or millions. And if you have a bunch of different data sets to compare to each other, really great visualizations facilitate this sort of data analysis just like all the other tools.


Too much data is never your problem

It's easy to get scared by looking at a lot of data.

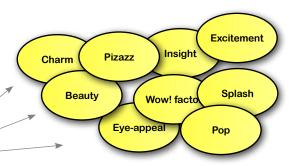
But knowing how to deal with what seems like a lot of data is easy, too.

If you've got a lot of data and aren't sure what to do with it, just remember your analytical objectives. With these in mind, stay focused on the data that speaks to your objectives and ignore the rest.

And some of it won't

be useful to you.

Duh. The problem is not too much data; the problem is figuring out how to make the data visually appealing.

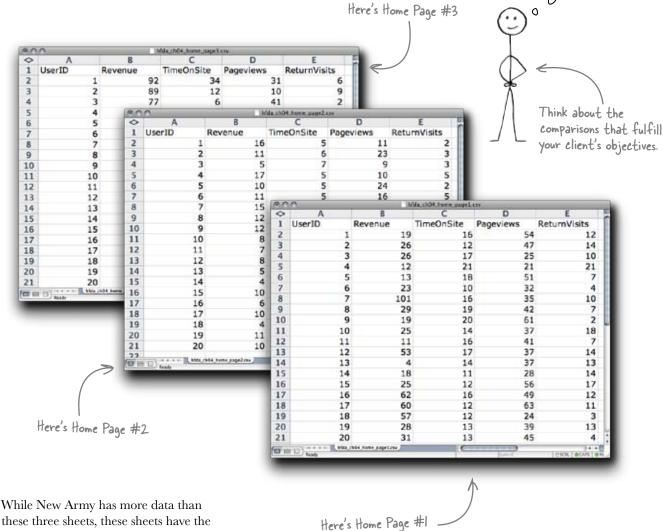

Oh, really? Do you think it's your job as a **data analyst** to create an aesthetic experience for your clients?

Making the data pretty isn't your problem either

If the data visualization solves a client's problem, it's always attractive, whether it's something really elaborate and visually stimulating or whether it's just a plain ol' table of numbers.

Making good data visualizations is just like making any sort of good data analysis. You just need to know where to start.





So *how* do you use a big pile of data with a bunch of different variables to evaluate your objectives? Where exactly do you begin?

Pata visualization is all about making the right comparisons

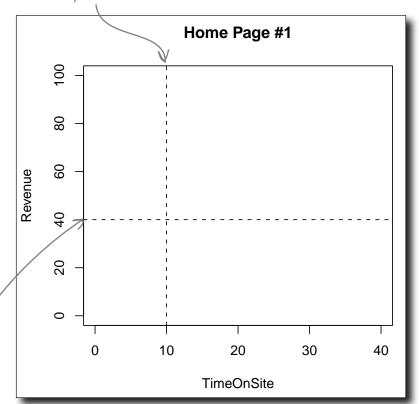
To build good visualizations, first identify what are the fundamental comparisons that will address your client's objectives. Take a look at their most important spreadsheets:

120 Chapter 4

now...

comparisons that will speak directly to what they want to know. Let's try out a comparison

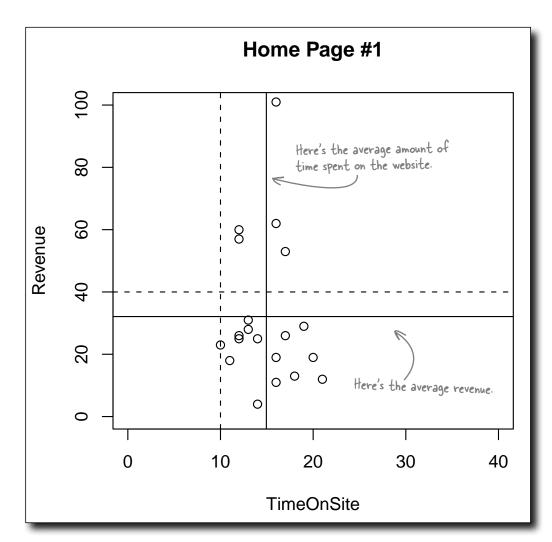
Sharpen your pencil


Take look at the statistics that describe the results for Home Page #1. Plot dots to represent each of the users on the axes below.

Use your spreadsheet's average formula (AVG) to calculate the average Revenue and TimeOnSite figures for Home Page #1, and draw those numbers as horizontal and vertical lines on the chart.

This value represents the New Army's goals for the average number of minutes each user spends on the website.

www.headfirstlabs.com/books/hfda/ hfda_ch04_home_page1.csv

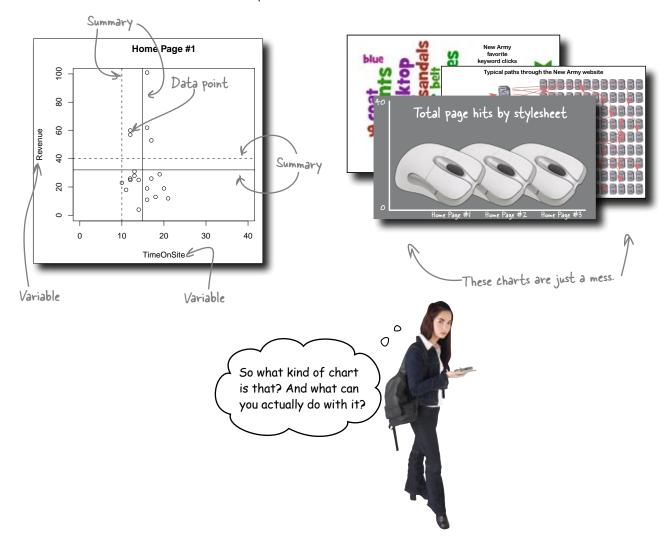


This value represents the goal New Army has for the average amount of money each user spends.

How do the results you see compare to their goals for revenue and time on site?

How did you visualize the Revenue and TimeOnSite variables for Home Page #1?

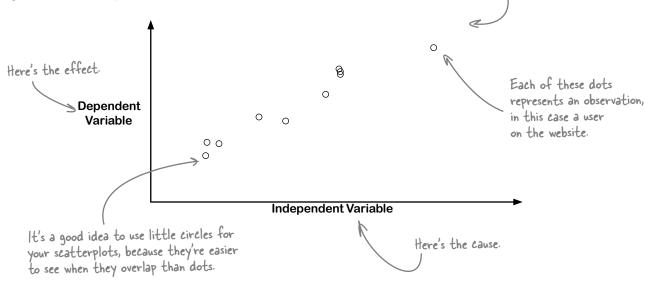
How do the results you see compare to their goals for revenue and time on site?

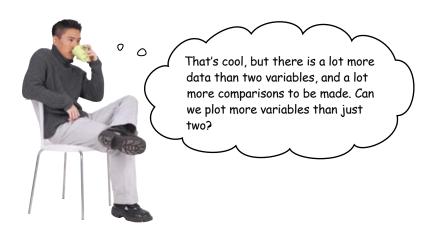

On average, the time people spend looking at the website under Home Page #1 is greater than New Army's goal for that statistic. On the other hand, the average amount of revenue for each user is less than their goal.

Your visualization is already more useful than the rejected ones

Now that's a nice chart, and it'll definitely be useful to your client. It's an example of a good data visualization because it...

- Shows the data
- Makes a smart comparison
- Shows multiple variables <

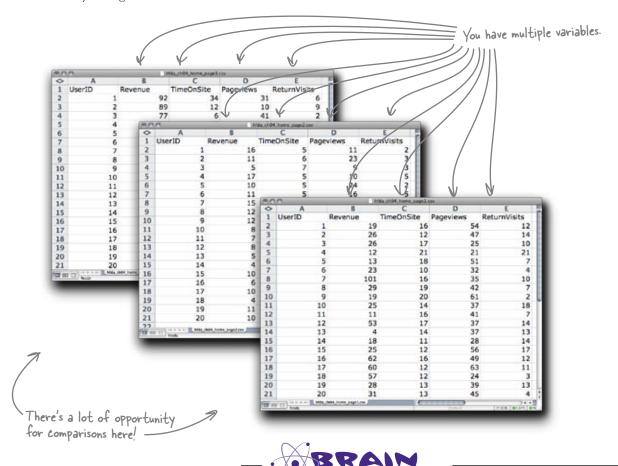

Here's another feature of great visualizations.


Use scatterplots to explore causes

Scatterplots are great tools for **exploratory data analysis**, which is the term statisticians use to describe looking around in a set of data for hypotheses to test.

Analysts like to use scatterplots when searching for **causal relationships**, where one variable is affecting the other. As a general rule, the horizontal x-axis of the scatterplot represents the **independent variable** (the variable we imagine to be a cause), and the vertical y-axis of a scatterplot represents the **dependent variable** (which we imagine to be the effect).

You don't have to *prove* that the value of the independent variable causes the value of the dependent variable, because after all we're exploring the data. But causes are what you're looking for.

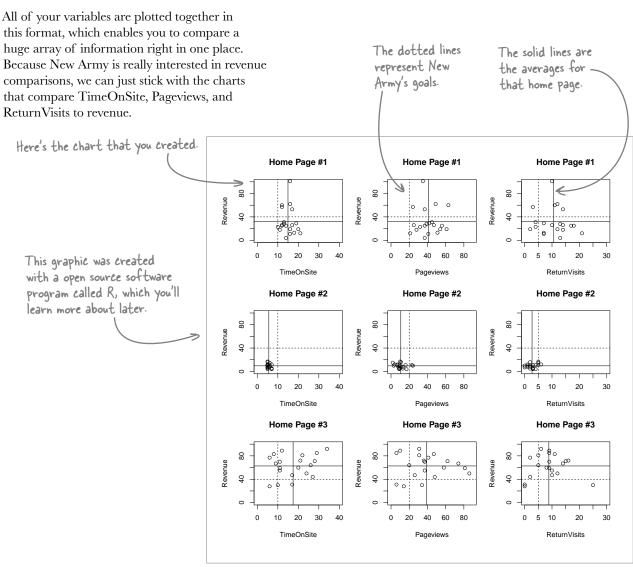


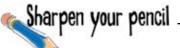
Here's a scatterplot.

The best visualizations are highly multivariate

A visualization is **multivariate** if it compares three or more variables. And because making good comparisons is fundamental to data analysis, making your visualizations **as multivariate as possible** makes it most likely that you'll make the best comparisons.

And in this case you've got a bunch of variables.




How would you make the scatterplot visualization

you've created more multivariate?

Show more variables by looking at charts together

One way of making your visualization more multivariate is just to show a bunch of similar scatterplots right next to each other, and here's an example of such a visualization.

You've just created a pretty complex visualization. Look at it and think about what it tells you about the stylesheets that New Army decided to test.

		aces a good job o	f showing the data? V	Vhy or why not?	
					······································
			#2 has a very differen nappening with Hom		
	ree stylesheets do cares about? Why		best job of maximizir	ng the variables	
			best job of maximizir	ng the variables	
			best job of maximizir	ng the variables	
hat New Army	cares about? Why	?		ng the variables	

Does the new visualization help you understand the comparative performance of the stylesheets?

Do you think that this visualization does a good job of showing the data? Why or why not? Definitely. Each dot on each of the nine panels represents the experience of a single user, so even though the data points are summarized into averages, you can still see absolutely all of them. Seeing all the points makes it easy to evaluate the spread, and the average lines make it easy to see how
each stylesheet performs relative to each other and relative to New Army's goals.
Just looking at the dots, you can see that Home Page #2 has a very different sort of spread from the other two stylesheets. What do you think is happening with Home Page #2?
It looks like Home Page #2 is performing terribly. Compared to the other two stylesheets, Home
Page #2 isn't bringing in much revenue and also performs poorly on the Time on Site, Pageviews,
and Return Visits figures. Every single user statistic is below New Army's goals. Home Page #2 is
terrible and should be taken offline immediately!
Which of the three stylesheets do you think does the best job of maximizing the variables that New Army cares about? Why?
Home Page #3 is the best. While #1 performs above average when it comes to the metrics besides
Revenue, #3 is way ahead in terms of revenue. When it comes to Return Visits, #1 is ahead, and
they're neck-and-neck on Pageviews, but people spend more time on the site with #3. It's great
that #1 gets a lot of return visits, but you can't argue with #3's superior revenue.

there are no Dumb Questions

What software tool should I use to create this sort of graphic?

A: Those specific graphs are created in a statistical data analysis program called R, which you're going to learn all about later in the book. But there are a number of charting tools you can use in statistical programs, and you don't even have to stop there. You can use illustration programs like Adobe Illustrator and just draw visualizations, if you have visual ideas that other software tools don't implement.

What about Excel and OpenOffice? They have charting tools, too.

A: Yes, well, that's true. They have a limited range of charting tools you can use, and you can probably figure out a way to create a chart like this one in your spreadsheet program, but it's going to be an uphill battle.

You don't sound too hot on spreadsheet data visualizations.

A: Many serious data analysts who use spreadsheets all the time for basic calculations and lists nevertheless wouldn't dream of using spreadsheet charting tools. They can be a real pain: not only is there a small range of charts you can create in spreadsheet programs, but often, the programs force you into formatting decisions that you might not otherwise make. It's not that you can't make good data graphics in spreadsheet programs; it's just that there's more trouble in it than you'd have if you learned how to use a program like R.

So if I'm looking for inspiration on chart types, the spreadsheet menus aren't the place to look?

A: No, no, no! If you want inspiration on designs, you should probably pick up some books by Edward Tufte, who's the authority on data visualization by a long shot. His body of work is like a museum of excellent data visualizations, which he sometimes calls "cognitive art."

Q: What about magazine, newspapers, and journal articles?

A: It's a good idea to become sensitive to data visualization quality in publications. Some are better than others when it comes to designing illuminating visualizations, and when you pay attention to the publications, over time, you'll get a sense of which ones do a better job. A good way to start would be to count the variables in a graphic. If there are three or more variables in a chart, the publication is more likely to be making intelligent comparisons than if there's one variable to a chart.

What should I make of data visualizations that are complex and artistic but not analytically useful?

A: There's a lot of enthusiasm and creativity nowadays for creating new computer-generated visualizations. Some of them facilitate good analytical thinking about the data, and some of them are just interesting to look at. There's absolutely nothing wrong with what some call data art. Just don't call it data analysis unless you can directly use it to achieve a greater understanding of the underlying data.

So something can be visually interesting without being analytically illuminating. What about vice versa?

A: That's your judgement call. But if you have something at stake in an analysis, and your visualization is illuminating, then it's hard to imagine that the graphic wouldn't be visually interesting!

Let's see what the client thinks...

The visualization is great, but the web guru's not satisfied yet

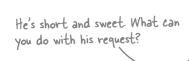
Nicel

You just got an email from your client, the web guru at New Army, assessing what you created for him. Let's see what he has to say...

Here's a

question.

reasonable

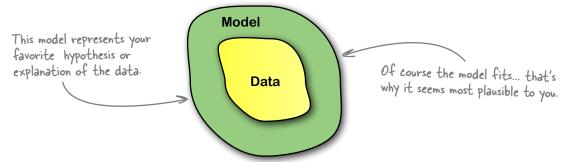

To: Head First


From: New Army Web Guru
Re: My explanation of the data

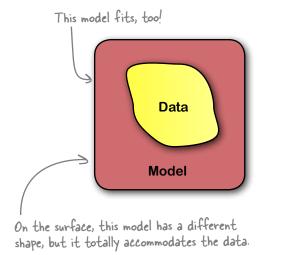
Your designs are excellent and we're pleased we switched to you from the other guy. But tell me something: why does Home Page #3 perform so much better than the others?

All this looks really reasonable, but I still want to know why we have these results. I've got two pet theories. First, I think that Home Page #3 loads faster, which makes the experience of the website more snappy. Second, I think that its cooler color palette is really relaxing and makes for a good shopping experience. What do you think?

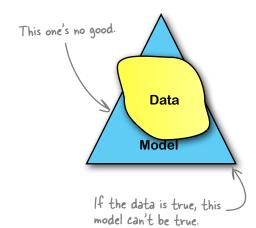
Looks like your client has some ideas of his own about why the data looks the way it looks.



Knowing what designs work only takes him so far. In order to make his website as powerful as possible, he needs some idea of why people interact with the different home pages the way they do.


And, since he's the client, we definitely need to address the theories he put forward.

Good visual designs help you think about causes


Your and your client's preferred model will usually fit the data.

But there are always other possibilities, especially when you are willing to get imaginative about the explanations. What about other models?

You need to address alternative causal models or explanations as you describe your data visualization. Doing so is a real mark of integrity: it shows your client that you're not just showing the version of the story that you like best: you're thinking through possible failure points in your theories.

The experiment designers weigh in

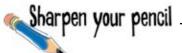
The experiment designers saw the web guru's theories and sent you some of their thoughts. Perhaps their input will enable you to evaluate the web guru's hypotheses about why some home pages performed better than others.

To: Head First

From: New Army experiment designers

Re: The boss's ideas

He thinks that page loads count? That could be. We haven't taken a look at the data yet to see for sure. But in our testing, #2 was the fastest, followed by #3, and then #1. So, sure, he could be right.


As for the cooler color palette, we kind of doubt it. The color palette of Home Page #3 is coolest, followed by #2, then #1, by the way. There's research to show that people react differently, but none of it has really persuaded us.

Here's what the experiment designers think about the first hypothesis.

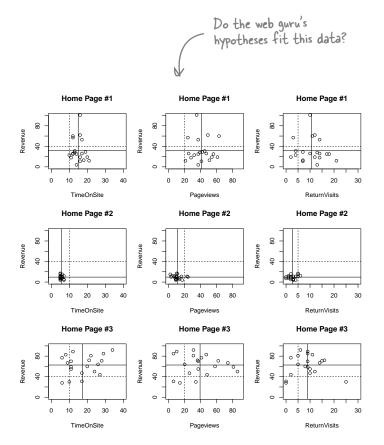
there's their response to the second hypothesis.

We better take a look at the data to see whether it confirms or disconfirms these hypotheses.

Let's take a look at the data to see whether the bosses hypotheses fit. Does the data fit either of the hypotheses?

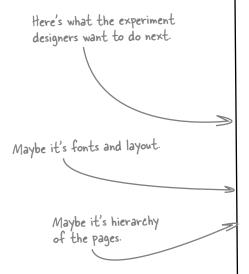
Hypothesis 1: The snappy performance of snappy web pages accounts for why Home Page #3 performed best.		Do the w hypothese	eb guru's s fit this data?
		OF	
	Home Page #1	Home Page #1	Home Page #1
	- 90000	Revenue	6 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 10 20 30 40	0 20 40 60 80	0 5 10 20 30
	TimeOnSite	Pageviews	ReturnVisits
	Home Page #2	Home Page #2	Home Page #2
	0 10 20 30 40	Revenue	0 5 10 20 30
Hypothesis 2: The relaxing, cool color	TimeOnSite	Pageviews	ReturnVisits
palette of Home Page #3 accounts for why it performed best.	Home Page #3	Home Page #3	Home Page #3
	Revenue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Revenue Revenue Revenue	0 5 10 20 30
	TimeOnSite	Pageviews	ReturnVisits

How well did you find the web guru's hypotheses to fit the data?


Hypothesis 1: The snappy performance of snappy web pages accounts for why Home Page #3 performed best.

This can't be true, since #3 isn't the

fastest, according to the experiment designers. It might be that as general rule people prefer faster pages, but page load speed can't explain #3's success in the context of this experiment.


Hypothesis 2: The relaxing, cool color palette of Home Page #3 accounts for why it performed best.

This hypothesis fits the data. Home Page #3 is the highest-performing page, and it has the coolest color palette. The data don't prove that the color palette is the reason that #3 performed so well, but it fits the hypothesis.

The experiment designers have some hypotheses of their own

They've had an opportunity to take a look at your scatterplots and sent you some of their own thinking about what's going on. These people are data junkies, and their hypotheses definitely fit.

To: Head First

From: New Army experiment designers

Re: We don't know why Home Page #3 is stronger

We're delighted to hear that #3 is the best, but we really don't know why. Who knows what people are thinking? But that is actually OK: as long as we're showing improvement on the business fundamentals, we don't need to understand people in a deep way. Still, it's interesting to learn as much as we can.

The stylesheets are really different from each other in many ways. So when it comes to isolating individual features that might account for the performance differential, it's hard. In the future, we'd like to take Home Page #3 and test a bunch of subtle permutations. That way, we might learn things like how button shape or font choice affect user behavior.

But we conjecture that there are two factors. First, Home Page #3 is really readable. We use fonts and a layout that are easy on the eyes. Second, the page hierarchy is flatter. You can find pretty much everything in three clicks, when for Home Page #1 it takes you more like seven clicks to find what you want. Both could be affecting our revenue, but we need more testing to say for sure.

What would you tell your client to do with his website on the bases of the data you visualized and the explanatory theories you evaluated?

Stick with Home Page #3 and test for finer-grained elements of the user's experience, like variable navigation, style, and content. There are a bunch of different possible explanations for #3's performance that should be investigated and visualized, but it's clear that #3 is the victor here.

The client is pleased with your work

You created an excellent visualization that enabled New Army to quickly and simultaneously assess all the variables they tested in their experiment.

And you evaluated that visualization in light of a bunch of different hypotheses, giving them some excellent ideas about what to test for in the future.

Very cool. I agree with your assessments of the hypotheses and your recommendation. I'm implementing Home Page #3 for our website, Job well done.

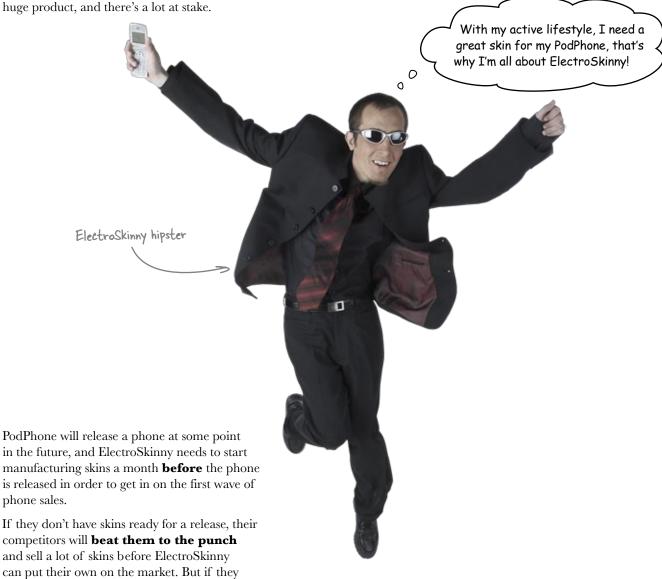
Orders are coming in from everywhere!

Because of the new website, traffic is greater than ever. Your visualization of the experimental results showed what they needed to know to spruce up their website.

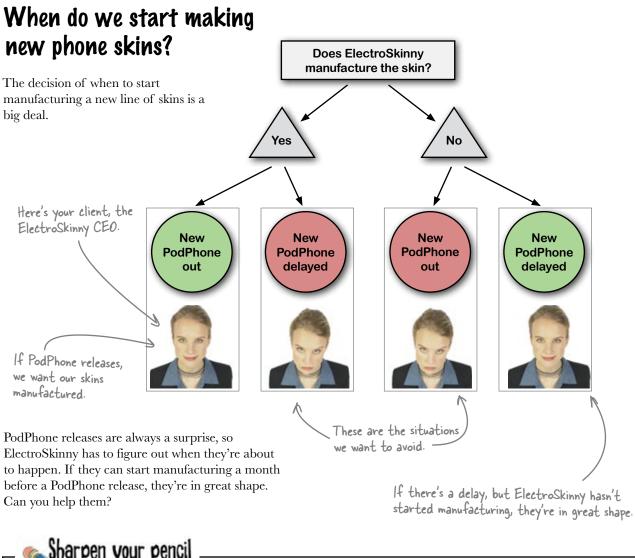
Even better, New Army has embarked on a continuous program of experimentation to fine-tune their new design, using your visualization to see what works. Nice job!

New Army's optimized website is really paying off.

5 hypothesis testing



The world can be tricky to explain.


And it can be fiendishly difficult when you have to deal with complex, heterogeneous data to anticipate future events. This is why analysts don't just take the obvious explanations and assume them to be true: the careful reasoning of data analysis enables you to meticulously evaluate a bunch of options so that you can incorporate all the information you have into your models. You're about to learn about **falsification**, an unintuitive but powerful way to do just that.

Gimme some skin...

You're with ElectroSkinny, a maker of phone skins. Your assignment is to figure out whether PodPhone is going to release a new phone next month. PodPhone is a huge product, and there's a lot at stake.

manufacture skins and PodPhone *isn't* released, they'll have **wasted money** on skins that no one knows when they'll be able to sell.

Sharpen your pen	MI
	What sort of data or information would help you get started on this analytical problem?

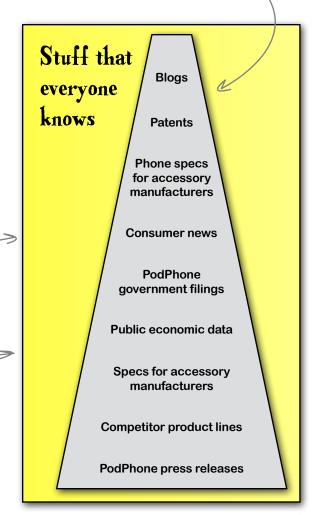
What do you need to know in order to get started?

PodPhone wants their releases to be a surprise, so they'll probably take measures to avoid letting

people figure out when those releases happen. We'll need some sort of insight into how they think

about their releases, and we'll need to know what kind of information they use in their decision.

PodPhone doesn't want you to predict their next move


PodPhone takes surprise seriously: they really don't want you to know what they're up to. So you can't just look at publicly available data and expect an answer of when they're releasing the PodPhone to pop out at you.

These data points really aren't going to be of much help...

...unless you've got a really smart way to think about them.

You need to figure out how to *compare* the data you do have with your **hypotheses** about when PodPhone will release their new phone. But first, let's take a look at the key pieces of information we do have about PodPhone...

PodPhone knows you'll see all this information, so they won't want any of it to let on their release date.

Here's everything we know

Here's what little information ElectroSkinny has been able to piece together about the release. Some of it is publicly available, some of it is secret, and some of it is rumor.

PodPhone has invested more in the new phone than any other company ever has.

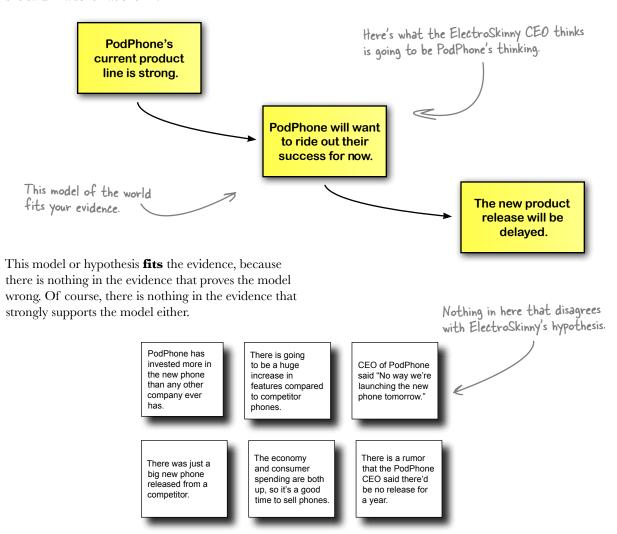
There is going to be a huge increase in features compared to competitor phones.

CEO of PodPhone said "No way we're launching the new phone tomorrow."

There was just a big new phone released from a competitor.

The economy and consumer spending are both up, so it's a good time to sell phones. There is a rumor that the PodPhone CEO said there'd be no release for a year.

Internally, we don't expect a release, because their product line is really strong. They'll want to ride out their success with this line as long as possible. I'm thinking we should start several months from now...



Do you think her hypothesis makes sense in light of the above evidence we have to consider?

ElectroSkinny's analysis does fit the data

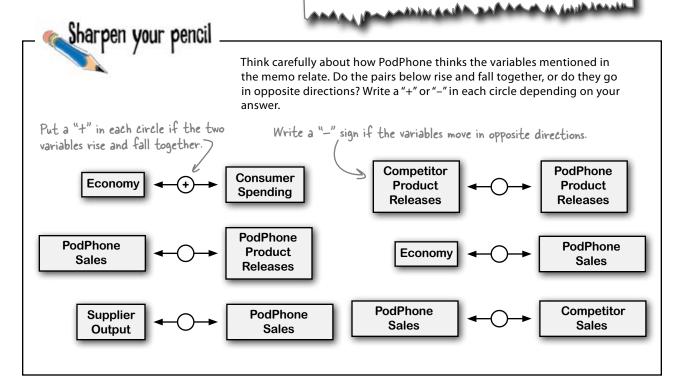
The CEO has a pretty straightforward account of stepby-step thinking on the part of PodPhone. Here's what she said in a schematic form:

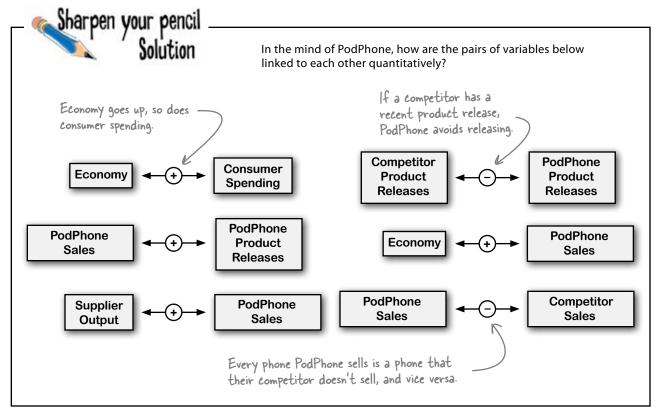
Seems like pretty solid reasoning...

ElectroSkinny obtained this confidential strategy memo

ElectroSkinny watches PodPhone *really* closely, and sometimes stuff like this just falls in your lap.

This strategy memo outlines a number of the factors that PodPhone considers when it's calculating its release dates. It's quite a bit more subtle than the reasoning the ElectroSkinny CEO imagined they are using.

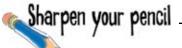

PodPhone phone release strategy memo


We want to time our releases to maximize sales and to beat out our competitors. We have to take into account a variety of factors to do it.

First, we watch the economy, because an increase in overall economic performance drives up consumer spending, while economic decline depresses consumer spending. And consumer spending is where all phone sales comes from. But we and our competitors are after the same pot of consumer spending. Every phone we sell is one they don't sell, and vice versa.

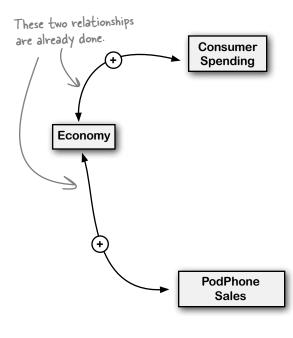
We don't usually want to release a phone when they have a new phone on the market. We take a bigger bite out of competitor sales if we release when they have a stale product portfolio.

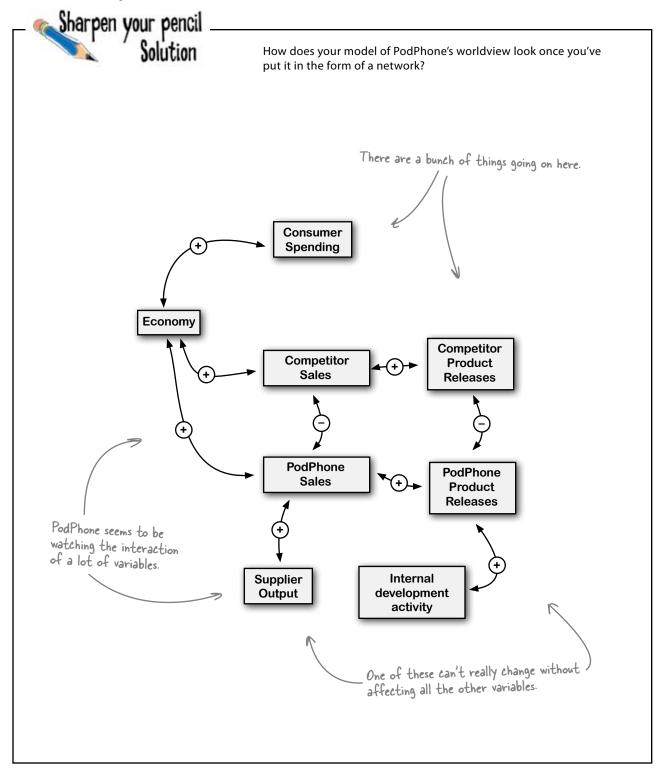
Our suppliers and internal development team place limits on our ability to drop new phones, too.



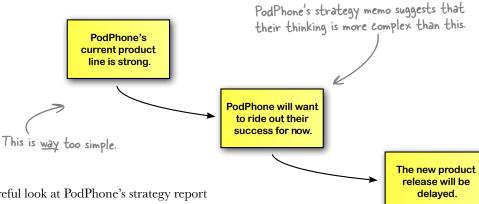
Variables can be negatively or positively linked

When you are looking at data variables, it's a good idea to ask whether they are **positively linked**, where more of one means more of the other (and vice versa), or **negatively linked**, where more of one means less of the other.


On the right are some more of the relationships PodPhone sees. How can you use these relationships to develop a **bigger model** of their beliefs, one that might predict when they're going to release their new phone?



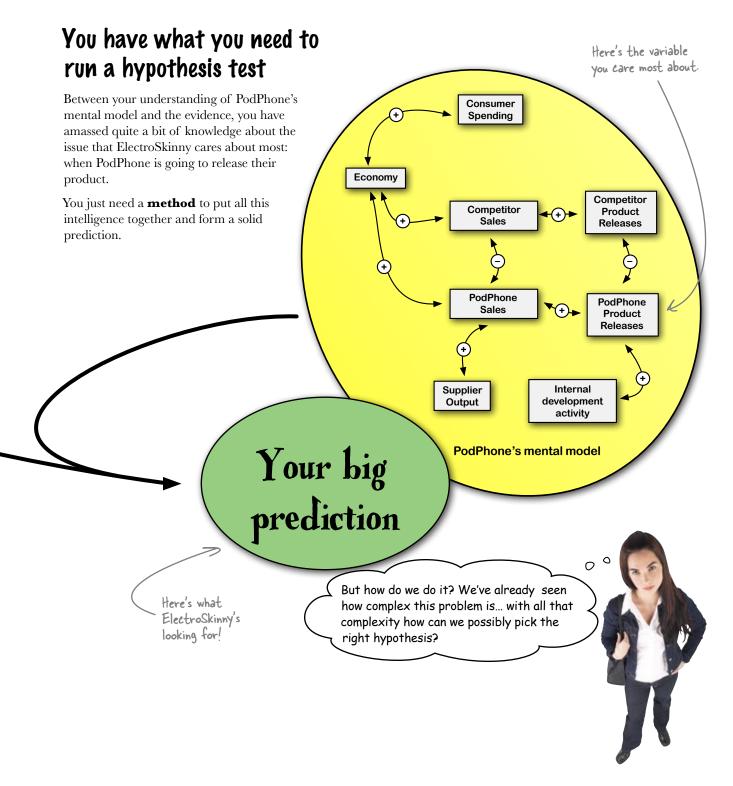
Let's tie those positive and negative links between variables into an integrated model.


Using the relationships specified on the facing page, draw a network that incorporates all of them.

Causes in the real world are networked, not linear

Linearity is intuitive. A linear explanation of the causes for why PodPhone might decide to delay their release is simple and straightforward.

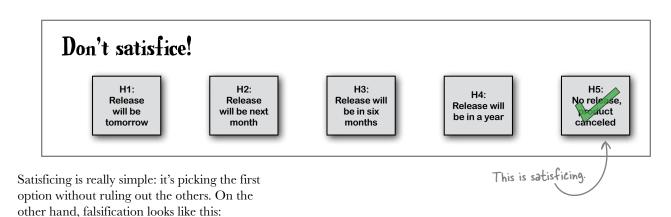
But a careful look at PodPhone's strategy report suggests that their actual thinking, whatever the details are, is much more complex and sophisticated than a simple linear, step-by-step diagram would suggest. PodPhone realizes that they are making decisions in the context of an active, volatile, interlinked **system**.

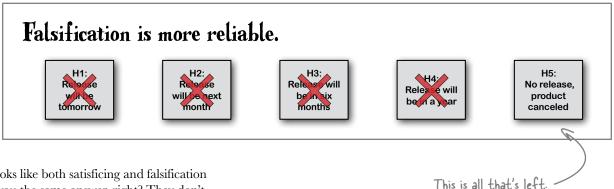

As an analyst, you need to see beyond simple models like this and expect to see causal **networks**. In the *real world* causes propagate across a network of related variables... why should your models be any different?

So how do we use that to figure out when PodPhone is going to release their new phone? What about the data?

Hypothesize PodPhone's options

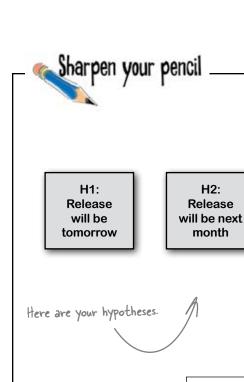
Sooner or later, PodPhone is going to release a new phone. The question is **when**.


And different answers to that question are your **hypotheses** for this analysis. Below are a PodPhone has There is going few options that specify when a release might invested more in CEO of PodPhone to be a huge the new phone said "No way we're occur, and picking the right hypothesis is what increase in than any other launching the new features compared ElectroSkinny needs you to do. company ever to competitor phone tomorrow." The economy You'll somehow combine your There was just a and consumer that the PodPhone big new phone hypotheses with this evidence spending are both CEO said there'd released from a be no release for up, so it's a good Here are a few estimates competitor. and PodPhone's mental time to sell phones. a year. of when the new PodPhone model to get your answer. might be released. Your evidence H1: Release will be tomorrow H2: Release will be next month H3: Release will be in six months H4: Release will be in a year H5: No release, Your product hypotheses canceled The hypothesis that we consider strongest will determine ElectroSkinny's manufacturing schedule.



Falsification is the heart of hypothesis testing

Don't try to pick the right hypothesis; just **eliminate the disconfirmed hypotheses**. This is the method of **falsification**, which is fundamental to hypothesis testing.


Picking the first hypothesis that seems best is called **satisficing** and looks like this:

It looks like both satisficing and falsification get you the same answer, right? They don't always. The **big problem** with satisficing is that when people pick a hypothesis without thoroughly analyzing the alternatives, they often stick with it even as evidence piles up against it. Falsification enables you to have a **more nimble perspective** on your hypotheses and avoid a huge cognitive trap.

Use falsification in hypothesis testing and avoid the danger of satisficing.

Give falsification a try and cross out any hypotheses that are falsified by the evidence below.

H3:
Release will
be in six
months

H4: Release will be in a year H5: No release, product canceled

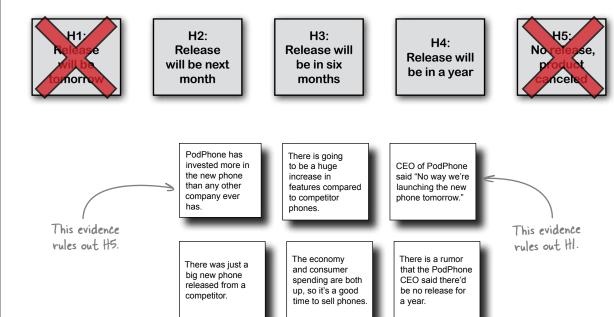
Which ones do your evidence suggest are wrong?

Here's your evidence.

PodPhone has invested more in the new phone than any other company ever has.

There is going to be a huge increase in features compared to competitor phones.

CEO of PodPhone said "No way we're launching the new phone tomorrow."


There was just a big new phone released from a competitor.

The economy and consumer spending are both up, so it's a good time to sell phones. There is a rumor that the PodPhone CEO said there'd be no release for a year.

Why do you believe that the hypotheses you picked are falsified by the evidence?

Which hypotheses did you find to be falsified?

Why do you believe that the hypotheses you picked are falsified by the evidence?

HI is definitely falsified by the evidence, because the CEO has gone on record saying that there was no way it'll happen tomorrow. The CEO might be lying, but that would be so weird that we can still rule out HI. H5 is falsified because PodPhone has put so much money into the phone. The phone might be delayed or changed, but unless the company ceases to exist, it's hard to imagine that they'd cancel the new phone.

there are no **Dumb Questions**

heterogenous data of widely varying quality. This method is falsification in a very general form, which makes it useful for very complex problems. But it's *definitely* a good idea to bone up on "frequentist" hypothesis testing described above, because for tests where the data fit its parameters, you would not want to use anything else.

P: I think that if my coworkers saw me reasoning like this they'd think I was crazy.

They certainly won't think you're crazy if you catch something really important. The aspiration of good data analysts is to uncover unintuitive answers to complex problems. Would you hire a conventionally minded data analyst? If you are really interested in learning something new about your data, you'll go for the person who thinks outside the box!

It seems like not all hypotheses could be falsified definitively. Like certain evidence might count against a hypothesis without *disproving* it.

A: That's totally correct.

Where's the data in all this? I'd expect to see a lot more numbers.

A: Data is not just a grid of numbers.
Falsification in hypothesis testing lets you take a more expansive view of "data" and aggregate a lot of heterogeneous data. You can put virtually any sort of data into the falsification framework.

What's the difference between using falsification to solve a problem and using optimization to solve it?

A: They're different tools for different contexts. In certain situations, you'll want to break out Solver to tweak your variables until you have the optimal values, and in other situations, you'll want to use falsification to eliminate possible explanations of your data.

OK. What if I can't use falsification to eliminate *all* the hypotheses?

A: That's the \$64,000 question! Let's see what we can do...

Q: So why aren't we using that method?

Falsification seems like a really

elaborate way to think about analyzing

situations. Is it really necessary?

A: It's a great way to overcome the

natural tendency to focus on the wrong

By forcing you to think in a really formal

features of a situation.

way, you'll be less likely to make mistakes

that stem from your ignorance of important

How does this sort of falsification relate to statistical hypothesis testing?

A: What you might have learned in

statistics class (or better yet, in Head

First Statistics) is a method of comparing

hypothesis) to a baseline hypothesis (the

"null" hypothesis). The idea is to identify a

situation that, if true, would make the null hypothesis darn near impossible.

a candidate hypothesis (the "alternate"

answer and ignore alternative explanations.

A: One of the virtues of this approach is that it enables you to aggregate

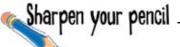
٥

Nice work! I definitely know more now than I did when I brought you on board. But can you do even better than this? What about eliminating two more?

We still have 3 hypotheses left. Looks like falsification didn't solve the whole problem. So what's the plan now?

0

How do you choose among the last three hypotheses?


You know that it's a bad idea to pick the one that looks like it has the most support, and falsification has helped you eliminate only two of the hypotheses, so what should you do now?

H2: Release will be next month H3: Release will be in six months

H4: Release will be in a year

1

Which one of these will you ultimately consider to be the strongest?

What are the benefits and drawbacks of each hypothesiselimination technique?

has the	e each hypothesis to the evidence and pick the one that most confirmation.	
•••••		
•••••		٠.
•••••		
Just pres whether	sent all of the hypotheses and let the client decide r to start manufacturing skins.	
•••••		٠.
•••••		
•••••		
Use the the fewe	evidence to rank hypotheses in the order of which has est evidence-based knocks against it.	
•••••		

Did you pick a hypothesis elimination technique that you like best?

	e each hypothesis to the evidence and pick the one that most confirmation.
This is	dangerous. The problem is that the information I have is incomplete. It could be that there
is some	thing really important that I don't know. And if that's true, then picking the hypothesis
based o	n what I do know will probably give me the wrong answer.
•••••	
	sent all of the hypotheses and let the client decide r to start manufacturing skins.
This is	certainly an option, but the problem with it is that I'm not really taking any responsibility
for the	conclusions. In other words, I'm not really acting as a data analyst as much as someone who
just de	ivers data. This is the wimpy approach.
•••••	
	evidence to rank hypotheses in the order of which has est evidence-based knocks against it.
This on	e is the best. I've already used falsification to rule out things that I'm sure can't be true.
Now, e	en though I can't rule out my remaining hypotheses, I can still use the evidence to see which
ones ar	e the strongest.

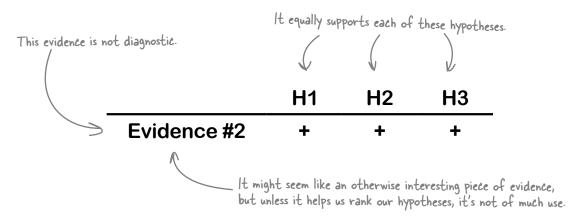
Wait a second. By putting the hypothesis that seems strongest at the top of the list, don't we run the risk of satisficing and picking the one we like rather than the one that's best supported by the evidence?

Not if you compare your evidence to your hypotheses by looking at its diagnosticity.

Evidence is **diagnostic** if it helps you rank one hypothesis as stronger than another, and so our method will be to look at each hypothesis in comparison to each piece of evidence and each other and see which has the strongest support.

Let's give it a shot...

-Scholar's Corner

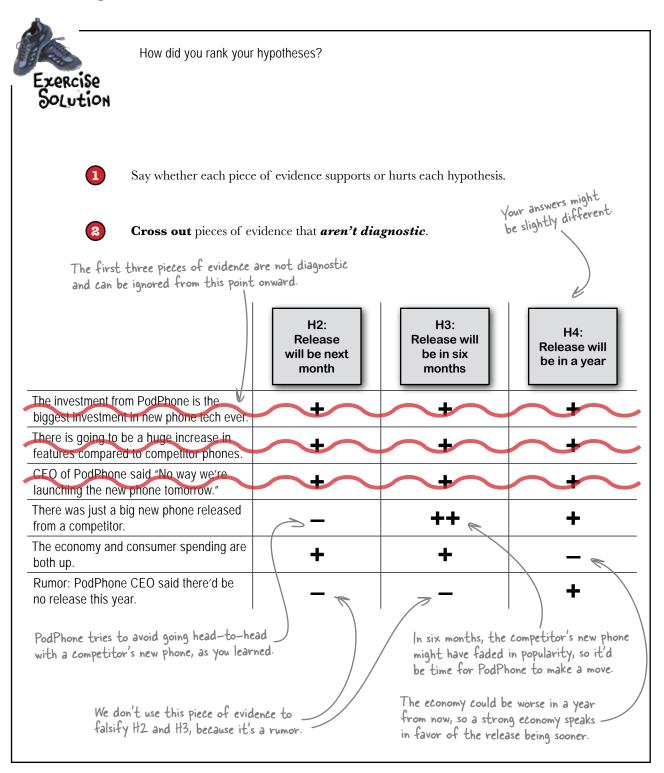

Diagnosticity is the ability of evidence to help you assess the relative likelihood of the hypotheses you're considering. If evidence is diagnostic, it helps you rank your hypotheses.

not diagnostic.

Diagnosticity helps you find the hypothesis with the least disconfirmation

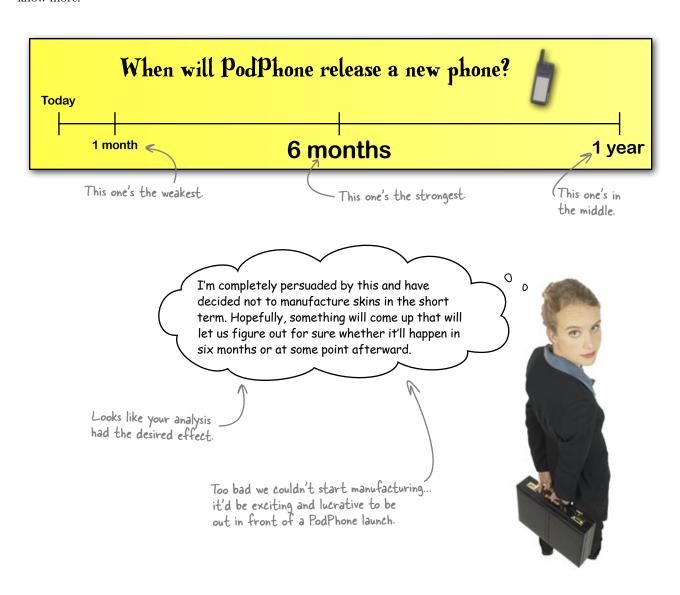
Evidence and data are **diagnostic** if they help you The weights you assign to these assess the relative strengths of hypotheses. The tables values are analytically rigorous but below compare different pieces of evidence with several subjective, so use your best judgment. hypotheses. The "+" symbol indicates that the evidence **supports** that hypothesis, while the "-" symbol indicates that the evidence **counts against** the hypothesis. This evidence counts ... but it really counts In the first table, the evidence is diagnostic. in favor of HI... in favor of H2 This evidence is diagnostic. **H3 H1 H2** This evidence doesn't disconfirm H3 outright, but In the second table, on the other hand, the evidence is it leads us to doubt H3.

When you are hypothesis testing, it's important to identify and seek out diagnostic evidence. Nondiagnostic evidence doesn't get you anywhere.


Let's try looking at the diagnosticity of our evidence...

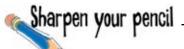
Take a close look at your evidence in comparison to each of your hypotheses. Use the plus and minus notation to rank hypotheses with diagnosticity.

- Say whether each piece of evidence supports or hurts each hypothesis.
- Cross out pieces of evidence that aren't diagnostic.


	H2: Release will be next month	H3: Release will be in six months	H4: Release will be in a year
The investment from PodPhone is the biggest investment in new phone tech ever.			
There is going to be a huge increase in features compared to competitor phones.			
CEO of PodPhone said "No way we're launching the new phone tomorrow."			
There was just a big new phone released from a competitor.			
The economy and consumer spending are both up.			
Rumor: PodPhone CEO said there'd be no release this year.			

You can't rule out all the hypotheses, but you can say which is strongest

While the evidence you have at your disposal doesn't enable you to rule out all hypotheses but one, you can take the three remaining and figure out which one has the least disconfirmation from the evidence.


That hypothesis is going to be your best bet until you know more.

You just got a picture message...

Your coworker saw this crew of PodPhone employees at a restaurant just now.

Do your hypothesis test again, this time with the new evidence.

	H2: Release will be next month	H3: Release will be in six months	H4: Release will be in a year
There was just a big new phone released from a competitor.	_	++	+
The economy and consumer spending are both up.	+	+	_
Rumor: PodPhone CEO said there'd be no release this year.	_	_	+

Write down the new piece of evidence here.

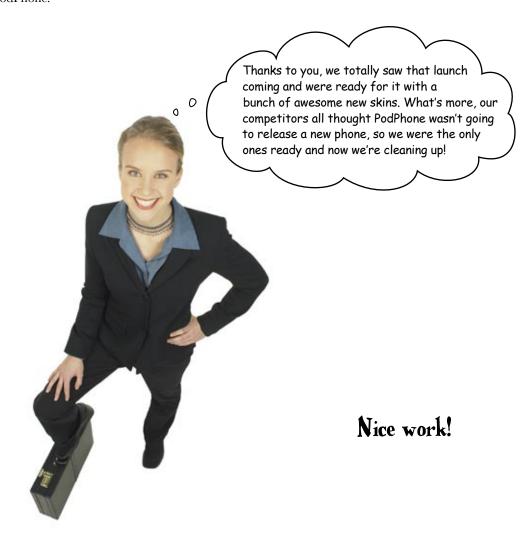
2

Does this new evidence change your assessment of whether PodPhone

is about to announce its new phone (and whether ElectroSkinny should start manufacturing)?				

Did your new evidence change your ideas about the relative strengths of your hypotheses? How?

	H2: Release will be next month	H3: Release will be in six months	H4: Release will be in a year
There was just a big new phone released from a competitor.	_	++	+
The economy and consumer spending are both up.	+	+	_
There is a rumor that CEO isn't going to release this year at all.	-	_	+
The development team is seen having a huge celebration, holding new phones.	+++	_	_


This is a big one!

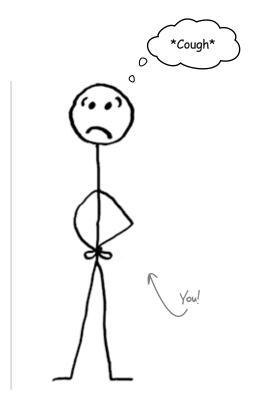
- Add new the evidence to the list. Determine the diagnostic strength of the new evidence.
- Does this new evidence change your assessment of whether PodPhone is about to announce its new phone (and whether ElectroSkinny should start manufacturing)?

Definitely. It's kind of hard to imagine that the team would be celebrating and passing around copies of the phone if they weren't going to release a new phone soon. We've already ruled out a launch tomorrow, and so it's really looking like H2 is our best hypothesis.

It's a launch!

Your analysis was spot on, and ElectroSkinny was had a line of cool new skins for the new model of the PodPhone.

6 bayesian statistics


You'll always be collecting new data.

And you need to make sure that every analysis you do incorporates the data you have that's relevant to your problem. You've learned how *falsification* can be used to deal with heterogeneous data sources, but what about **straight up probabilities**? The answer involves an extremely handy analytic tool called **Bayes' rule**, which will help you incorporate your **base rates** to uncover not-so-obvious insights with ever-changing data.

The doctor has disturbing news

Your eyes are not deceiving you. Your doctor has given you a diagnosis of **lizard flu**.

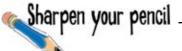
The **good news** is that lizard flu is not fatal and, if you have it, you're in for a full recovery after a few weeks of treatment. The **bad news** is that lizard flu is a big pain in the butt. You'll have to miss work, and you will have to stay away from your loved ones for a few weeks.

LIZARD FLU TEST RESULTS

Date: Today

Name: Head First Data Analyst

Diagnosis: Positive


Here's some information on lizard flu:

Lizard flu is a tropical disease first observed among lizard researchers in South America.

The disease is highly contagious, and affected patients need to be quarantined in their homes for no fewer than six weeks.

Patients diagnosed with lizard flu have been known to "taste the air" and in extreme cases have developed temporary chromatophores and zygodactylous feet.

Your doctor is convinced that you have it, but because you've become so handy with data, you might want to take a look at the **test** and see just **how accurate** it is.

A quick web search on the lizard flu diagnostic test has yielded this result: an analysis of the test's accuracy.

90%... that looks pretty solid.

Lizard flu diagnostic test

Accuracy analysis

If someone has lizard flu, the probability that the test returns *positive* for it is 90 percent.

If someone doesn't have lizard flu, the probability that the test returns *positive* for it is 9 percent.

** - Catala * Casty * Danis * Deutsch * Englan * Especial * Especial * Paragas * Bahasa Indonesa * ra * Magyar * Nachrinata * 日本語 * 日本語

Med-O-Pedia

This is an interesting statistic.

In light of this information, what do you think is the probability that you have lizard flu? How did you come to your decision?		

You just looked at some data on the efficacy of the lizard flu diagnostic test. What did you decide were the chances that you have the disease?

Lizard flu diagnostic test

Accuracy analysis

If someone has lizard flu, the probability that the test returns *positive* for it is 90 percent.

If someone doesn't have lizard flu, the probability that the test returns *positive* for it is 9 percent.

In light of this information, what do you think is the probability that you have lizard flu? How did you come to your decision?

It looks like the chances would be 90% if I had the disease. But not everyone has the disease, as

the second statistic shows. So I should revise my estimate down a little bit. But it doesn't seem like

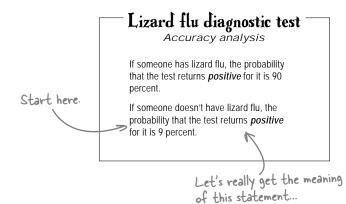
the answer is going to be exactly 90%-9%=81%, because that would be too easy, so, I dunno, maybe

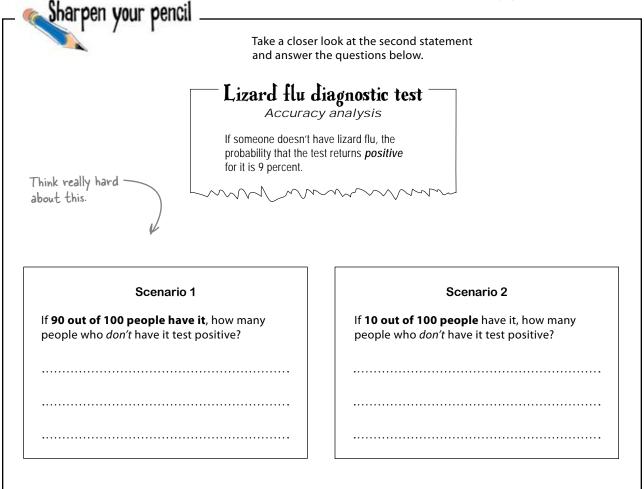
75%?

, The answer is way lower than 75%!

75% is the answer that most people give to this sort of question. And they're way off.

Not only is 75% the wrong answer, but it's not anywhere near the right answer. And if you started making decisions with


answer. And if you started making decisions with the idea that there's a 75% chance you have lizard flu, you'd be making an even bigger mistake! There is so much at stake in getting the answer to this question correct.


We are *totally* going to get to the bottom of this...

Let's take the accuracy analysis one claim at a time

There are two different and obviously important claims being made about the test: the rate at which the test returns "positive" varies depending on whether the person has lizard flu or not.

So let's **imagine two different worlds**, one where a lot of people have lizard flu and one where few people have it, and then look at the claim about "positive" scores for people who **don't** have lizard flu.

Does the number of people who have the disease affect how many people are wrongly told that they test positive?

Lizard flu diagnostic test

Accuracy analysis

If someone doesn't have lizard flu, the probability that the test returns *positive* for it is 9 percent.

Scenario 1

If **90 out of 100 poeple have it**, how many people who *don't* have it test positive?

This means that 10 people don't have it, so

we take 9% of 10 people, which is about 1

person who tests positive but doesn't have it.

Scenario 2

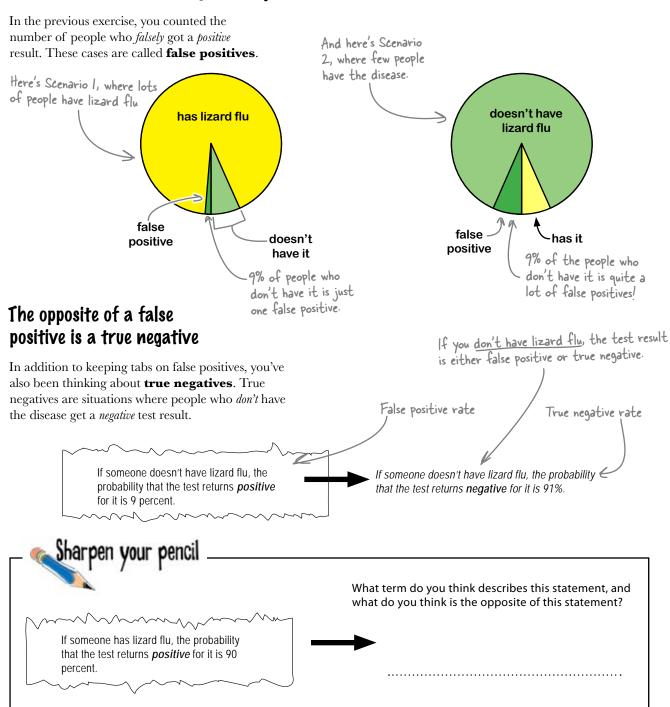
If **10 out of 100 people** have it, how many people who *don't* have it test positive?

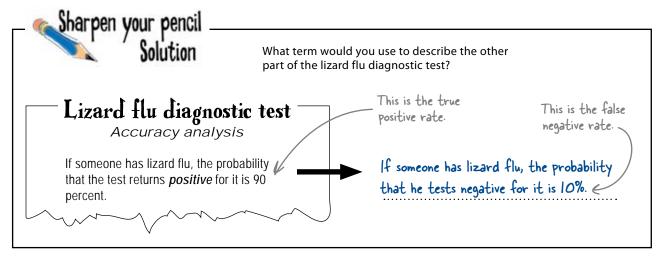
This means that 90 people don't have it,

so we take 9% of 90 people, which is 10

people who test positive but don't have it.

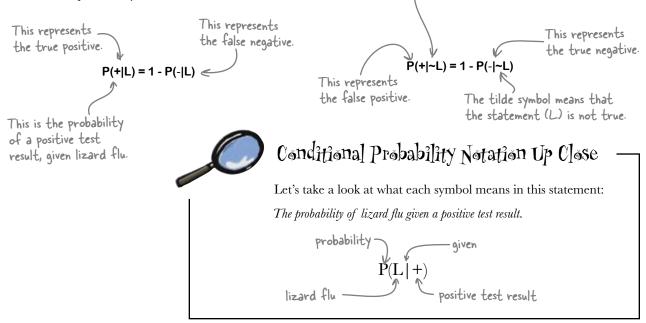
How common is lizard flu really?


At least when it comes to situations where people who *don't* have lizard flu test positively, it seems that the prevalence of lizard flu in the general population makes a big difference.


In fact, unless we know **how many people** *already* **have lizard flu**, in addition to the accuracy analysis of the test, we simply cannot figure out how likely it is that you have lizard flu.

We need more data to make sense of that diagnostic test...

You've been counting false positives



All these terms describe conditional probabilities

A **conditional probability** in the probability of some event, *given* that some other event has happened. *Assuming* that someone tests positive, what are the chances that he has lizard flu?

Here's how the statements you've been using look in conditional probability notation:

This is the probability of a

positive test result, given that the person doesn't have lizard flu.

You need to count true positives, false negatives, and true negatives

Figuring out your probability of having lizard flu is all about knowing how many **actual people** are represented by these figures.

thow many <u>actual people</u> fit into each of these probability groupings?

P(+|~L), the probability at someone tests **positive**, given that they **don't** have lizard flu
P(+|L), , the probability at someone tests **positive**, given that they **do** have lizard flu
P(-|L), the probability at someone tests **negative**, given that they **do** have lizard flu
P(-|~L), the probability at someone tests **negative** given that they **don't** have lizard flu.

But first you need to know how many people have lizard flu. Then you can use these percentages to calculate how many people actually fall into these categories.

This is the figure you want!

∍P(L|+)

What is the probability of lizard flu, given a positive test result?

Yeah, I get it. So how many people have lizard flu?

0

1 percent of people have lizard flu

Here's the number you need in order to interpret your test. Turns out that 1 percent of the population has lizard flu. In human terms, that's quite a lot of people. But as a percentage of the overall population, it's a pretty small number.

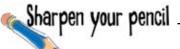
One percent is the **base rate**. Prior to learning anything new about individuals because of the test, you know that only 1 percent of the population has lizard flu. That's why base rates are also called **prior probabilities**.

Center for Disease Tracking is on top of lizard flu

Study finds that 1 percent of national population has lizard flu

The most recent data, which is current as of last week, indicates that 1 percent of the national population is infected with lizard flu. Although lizard flu is rarely fatal, these individuals need to be quarantined to prevent others from becoming infected.

Watch out for the base rate fallacy


I just thought that the 90% true positive rate meant it's really likely that you have it!

That's a fallacy!

Always be on the lookout for base rates. You might not have base rate data in every case, but if you do have a base rate and don't use it, you'll fall victim to the **base rate fallacy**, where you ignore your prior data and make the wrong decisions because of it.

In this case, your judgment about the probability that you have lizard flu depends *entirely* on the base rate, and because the base rate turns out to be 1 percent of people having lizard flu, that 90 percent true positive rate on the test doesn't seem nearly so insightful.

Calculate the probability that you have lizard flu. Assuming you start with 1,000 people, fill in the blanks, dividing them into groups according to your base rates and the specs of the test.

Lizard flu diagnostic test

Accuracy analysis

If someone has lizard flu, the probability that the test returns *positive* for it is 90 percent.

If someone doesn't have lizard flu, the probability that the test returns *positive* for it is 9 percent.

Remember, 1% of people have lizard flu.

1,000 people

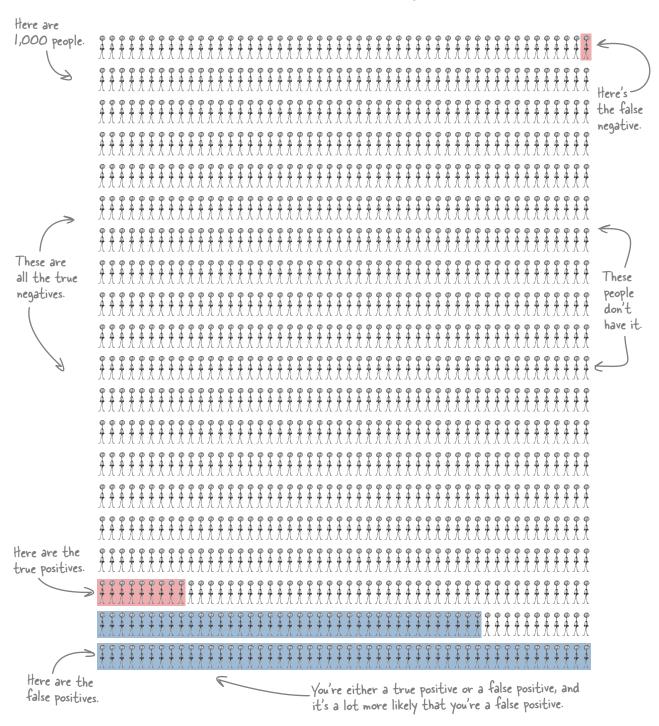
The number of people

The number of people who have it

The number who test positive

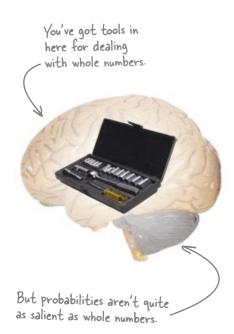
The number who test negative

who don't have it


The number who test positive

The number who test negative

The probability that you have it, given that you tested negative # of people who have it and test negative


What did you calculate your new probability of having lizard flu to be? Lizard flu diagnostic test Accuracy analysis If someone has lizard flu, the probability that the test returns *positive* for it is 90 percent. If someone doesn't have lizard flu, the probability that the test returns *positive* for it is 9 percent. 1,000 people 91% of people who've tested 9% of people who've tested positively have lizard flu. positively don't have lizard flu. The number of The number of people people who have it who don't have it The number who The number who The number who The number who test positive test negative test positive test negative # of people who have it and test negative The probability that you have it, given that (# of people who have it and test negative) + you tested negative (# of people who don't have it and test negative) There's a 9% chance that I have lizard flul

Your chances of having lizard flu are still pretty low

Po complex probabilistic thinking with simple whole numbers

When you imagined that you were looking at 1,000 people, you switched from decimal probabilities to **whole numbers**. Because our brains aren't innately well-equipped to process numerical probabilities, converting probabilities to whole numbers and then thinking through them is a very effective way to avoid making mistakes.

This formula will give

you the same result you just calculated.

Bayes' rule manages your base rates when you get new data

Believe it or not, you just did a commonsense implementation of Bayes' rule, an incredibly powerful statistical formula that enables you to use base rates along with your conditional probabilities to estimate new conditional probabilities.

If you wanted to make the same calculation algebraically, you could use this monster of a formula:

you could use this monster of a formula:

The probability of lizard flu given a positive test result $P(L \mid +) = \frac{P(L)P(+ \mid L)}{P(L)P(+ \mid L) + P(-)P(+ \mid \sim L)}$ The base rate (people who don't have the disease)

You can use Bayes' rule over and over

Bayes' rule is an important tool in data analysis, because it provides a precise way of incorporating new Bayes' rule lets you information into your analyses. add more information over time. My Analysis My Analysis **Base** Test **Base** rate results rate My Analysis More Base Test test rate results results So the test isn't that accurate. You're still nine times Yep, you're 9x more likely more likely to have lizard flu to have lizard flu than than other people. Shouldn't you the regular population. get another test? 1% The base rate: Your doctor took the suggestion and ordered another test. Let's see what it said...

Your second test result is negative

The doctor didn't order you the more powerful, advanced lizard flu test the first time because it's kind of expensive, but now that you tested positively on the first (cheaper, less accurate) test, it's time to bring out the big guns...

> The doctor ordered a slightly different test: the "advanced" lizard flu diagnostic test.

ADVANCED LIZARD FLU TEST RESULTS

Today Date:

Head First Data Analyst Name:

Diagnosis: Negative

Here's some information on lizard flu:

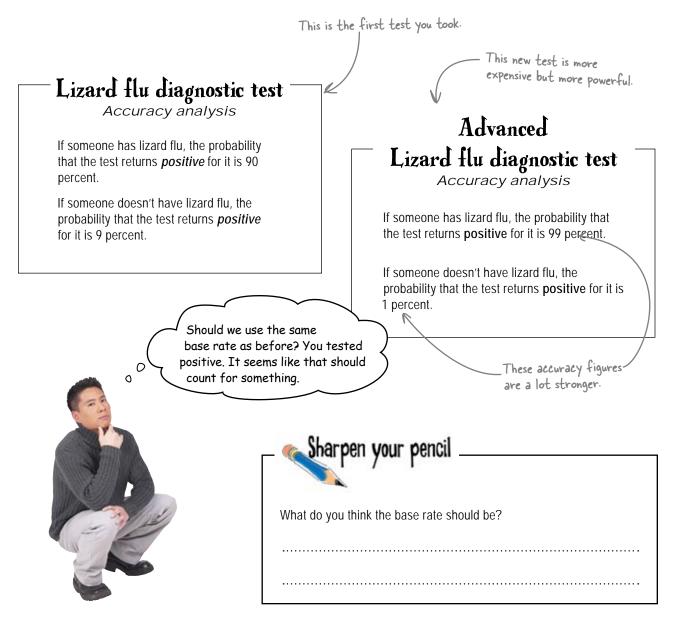
Lizard flu is a tropical disease first observed among lizard researchers in

South America.

The disease is highly contagious, and affected patients need to be quarantined in their homes for no fewer than six weeks.

Patients diagnosed with lizard flu have been known to "taste the air" and in extreme cases have developed temporary chromatophores and zygodactylous feet.

That's a relief!


You got these probabilities wrong before.

Better run the numbers again. By now, you know that responding to the test result (or even the test

accuracy statistics) without looking at base rates is a recipe for confusion.

The new test has different accuracy statistics

Using your base rate, you can use the new test's statistics to calculate the new probability that you have lizard flu.

What do you think the base rate should be?

1% can't be the base rate. The new base rate is the 9% we just calculated,

because that figure is my own probability of having the disease.

New information can change your base rate

When you got your first test results back, you used as your base rate the incidence in the population of *everybody* for lizard flu.

1% of everybody has lizard flu

Old base rate

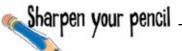
You used to be part of this group...

But you learned from the test that your probability of having lizard flu is higher than the base rate. That probability is your new base rate, because now you're part of the group of people who've

tested positively.

... now you're part of this group.

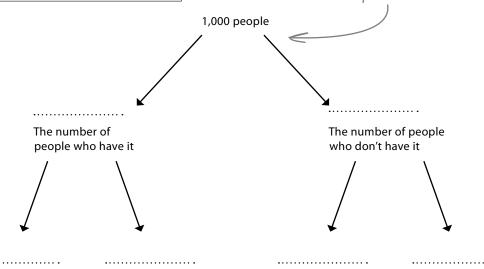
9% of people who tested positively have lizard flu


Your new base rate

Just a regular person...
nothing remarkable

Let's hurry up and run Bayes' rule again...

Using the new test and your revised base rate, let's calculate the probability that you have lizard flu given your results.


Advanced Lizard flu diagnostic test

Accuracy analysis

If someone has lizard flu, the probability that the test returns **positive** for it is 99 percent.

If someone doesn't have lizard flu, the probability that the test returns **positive** for it is 1 percent.

Remember, 9% of people like you will have lizard flu.

The number who test positive

The number who test negative

The number who test positive

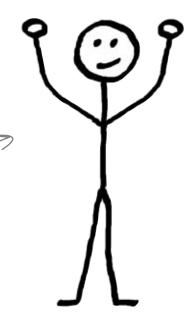
The number who test negative

The probability that you have it, given that you tested negative

of people who have it and test negative

(# of people who have it and test negative) + (# of people who don't have it and test negative)

What do you calculate your new probability of having lizard flu to be? Advanced Lizard flu diagnostic test Accuracy analysis If someone has lizard flu, the probability that the test returns **positive** for it is 99 percent. If someone doesn't have lizard flu, the probability that the test returns positive for it is 1 percent. 1,000 people 91% of people who've tested 9% of people who've tested positively have lizard flu. positively don't have lizard flu. The number of The number of people people who have it who don't have it The number who The number who The number who The number who test positive test negative test positive test negative # of people who have it and test negative The probability that you have it, given that (# of people who have it and test negative) + you tested negative (# of people who don't have it and test negative) There's a 0.1% chance that I have lizard flut


What a relief!

You took control of the probabilities

using Bayes' rule and now know how to manage base rates.

The only way to avoid the base rate fallacy is always to be on the lookout for base rates and to be sure to incorporate them into your analyses.

Your probability of having lizard flu is so low that you can pretty much rule it out.

No lizard flu for you!

Now you've just got to shake that cold...

7 subjective probabilities

Numerical belief *

She's a perfect 10...

Before the ice cream, I gave him a 3, but now he's a 4.

Sometimes, it's a good idea to make up numbers.

Seriously. But only if those numbers describe your own mental states, expressing your beliefs. Subjective probability is a straightforward way of injecting some real rigor into your hunches, and you're about to see how. Along the way, you are going to learn how to evaluate the spread of data using standard deviation and enjoy a special guest appearance from one of the more powerful analytic tools you've learned.

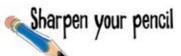
Backwater Investments needs your help

Backwater Investments is a business that tries to make money by seeking out **obscure investments** in developing markets. They pick investments that other people have a hard time understanding or even finding.

Their strategy means that they rely heavily on the **expertise of their analysts**, who need to have impeccable judgment and good connections to be able to get BI the information they need for good investment decisions.

It's a cool business, except it's about to be **torn apart** by arguments among the analysts. The disagreements are so acrimonious that everyone's about to quit, which would be a disaster for the fund.

The internal crisis at Backwater Investments might force the company to shut down.

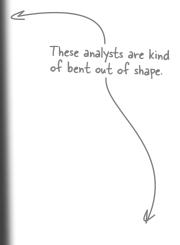

Their analysts are at each other's throats

The analysts at BI are having big disagreements over a number of geopolitical trends. And this is a big problem for the people trying to set investment strategy based on their analyses. There are a bunch of different issues that are causing splits.

Where *precisely* are the disagreements? It would be really great if you could help figure out the scope of the dispute and help achieve a consensus among the analysts. Or, at the very least, it'd be nice if you could specify the disagreements in a way that will let the BI bosses figure out where they stand.

Let's take a look at the disputes...

Take a look at these emails, which the analysts have sent you. Do they help you understand their arguments?


From: Senior Research Analyst, Backwater Investments

To: Head First

Subject: Rant on Vietnam

For the past six months, I've consistently argued to the staff that the Vietnamese government is probably going to reduce its taxes this year. And everything that we've seen from our people on the ground and in news reports confirms this.

Yet others in the "analytical" community at BI seem to think this is crazy. I'm a considered dreamer by the higher-ups and told that such a gesture or the part of the government is "highly unlikely." Well, what do they base this assessment on? Clearly the government is encouraging foreign investment. I'll tell you this: if taxes go down, there will be a flood of private investment, and we need to increase our presence in Vietnam before the

Is the disagreement all about these three countries?

From: Political Analyst, Backwater Investments To: Head First

Subject: Investing in obscure places: A Manifesto

Russia, Indonesia, Vietnam. The community at BI has become obsessed with these three places. Yet aren't the answers to all our questions abundantly clear? Russia will continue to subsidize oil next quarter like it always has, and they're more likely than not to buy EuroAir next quarter. Vietnam might decrease taxes this year, and they probably aren't going to encourage foreign investment. Indonesia will more likely than not invest in ecotourism this year, but it won't be of much help. Tourism will definitely fall apart completely.

If BI doesn't fire the dissenters and troublemakers who dispute these truths, the firm might as well close...

From: VP, Economic Research, Backwater Investments

To: Head First

Subject: Have these people ever even been to Russia?

While the analytic stuff in the Economic division has continued to flourish and produce quality work on Russian business and government, the rest of BI has shown a shocking ignorance of the internal dynamics of Russia. It's quite unlikely that Russia will puchase EuroAir, and their support of the oil industry next quarter may be the most tentative it's ever been...

Even a top manager is starting to lose his cool!

This guy's writing from the field, where he's doing firsthand research. $_{\geqslant}$ From: Junior Researcher, Backwater Investments

To: Head First Subject: Indonesia

You need to stop listening to the eggheads back at corporate headquarters.

The perspective from the ground is that tourism definitely has a good chance of increasing this year, and Indonesia is all about ecotourism. The eggheads don't know anything, and I'm starting to think that my intel would be better used by a competing firm...

What are the key issues causing the disagreement?
The authors each use a bunch of words to describe what they think the likelihoods of various events are. List all the "probability words" they use.

Sharpen your pencil Solution

There are a bunch of probability words used in these emails...

What are your impressions of the arguments, now that you've read the analysts' emails?

From: Senior Research Analyst, Backwater Investments

To: Head First

Subject: Rant on Vietnam

For the past six months, I've consistently argued to the staff that the Vietnamese government is probably going to reduce its taxes this year. And everything that we've seen from our people on the ground and in news reports confirms this.

Yet others in the "analytical" community at BI seem to think this is crazy. I'm a dreamer by the higherups and told that such a gesture or the part of the government is "highly unlikely." Well, what do they base this assessment on? Clearly the government is encouraging foreign investment. I'll tell you this: if taxes go down, there will be a flood of private

From: VP, Economic Research, Backwater Inve To: Head First

Subject: Have these people ever even been to F

While the analytic stuff in the Economic divisio continued to flourish and produce quality work Russian business and government, the rest of Eshown a shocking ignorance of the internal dyn of Russia. It's quite unlikely that Russia will puc EuroAir, and their support of the oil industry ney quarter may be the most tentative it's ever bee

From: Political Analyst, Backwater Investments To: Head First

Subject: Investing in obscure places: A Manifesto

Russia, Indonesia, Vietnam. The community at BI has become obsessed with these three places. Yet aren't the answers to all our questions abundantly clear? Russia will continue to subsidize oil next quarter like it always has, and they're more likely than not to buy EuroAir next quarter. Vietnam might decrease taxes this year, and they probably aren't going to encourage foreign investment. Indonesia will more likely than not invest in ecotourism this year, but it won't be of much help. Tourism will definitely fall apart completely.

If BI doesn't fire the dissenters and troublemakers who dispute these truths, the firm might as well close...

From: Junior Researcher, Backwater Investments To: Head First

Subject: Indonesia

You need to stop listening to the eggheads back at corporate headquarters.

The perspective from the ground is that tourism definitely has a good chance of increasing this year, and Indonesia is all about ecotourism. The eggheads don't know anything, and I'm starting to think that my intel would be better used by a competing firm...

What are the key issues causing the disagreement?

There seem to be six areas of disagreement: 1) Will Russia subsidize oil business next quarter?

2) Will Russia purchase EuroAir? 3) Will Vietnam decrease taxes this year? 4) Will Vietnam's

government encourage foreign investment this year? 5) Will Indonesian tourism increase this year? 6)

Will the Indonesian government invest in ecotourism?

The authors use a bunch of words to describe what they think the likelihoods of various events are. List all the "probability words" they use.

The words they use are: probably, highly unlikely, more likely, might, probably aren't, unlikely, may,

definitely, and good chance.

Jim: So we're supposed to come in and tell everyone who's right and who's wrong? That shouldn't be a problem. All we need is to see the data.

Frank: Not so fast. These analysts aren't just regular folks. They're highly trained, highly experienced, serious domain experts when it comes to these countries.

Joe: Yeah. The CEO says they have all the data they could ever hope for. They have access to the best information in the world. They pay for proprietary data, they have people digging through government sources, and they have people on the ground doing firsthand reporting.

Frank: And geopolitics is highly uncertain stuff. They're predicting *single events* that don't have a big trail of numerical frequency data that you can just look at and use to make more predictions. They're aggregating data from a bunch of sources and making very highly educated guesses.

Jim: Then what you're saying is that these guys are smarter than we are, and that there is really nothing we can do to fix these arguments.

Joe: Providing our own data analysis would be just adding more screaming to the argument.

Frank: Actually, all the arguments involve hypotheses about what's going to happen in the various countries, and the analysts really get upset when it comes to those probability words. "Probably?" "Good chance?" What do those expressions even mean?

Jim: So you want to help them find better words to describe their feelings? Gosh, that sounds like a waste of time.

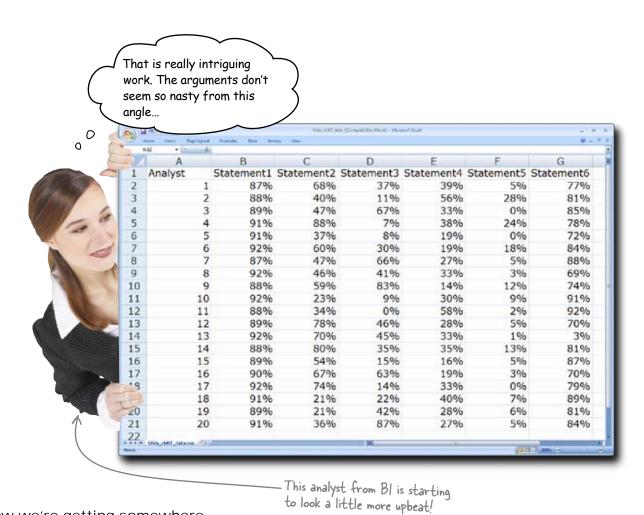
Frank: Maybe not words. We need to find something that will give these judgments more *precision*, even though they're someone's subjective beliefs...

How would you make the probability words more precise?


Subjective probabilities describe expert beliefs

When you assign a numerical probability to your degree of belief in something, you're specifying a **subjective probability**.

Subjective probabilities are a great way to apply discipline to an analysis, especially when you are predicting single events that lack hard data to describe what happened previously under identical conditions.


Subjective probabilities might show no real disagreement after all

Sharpe	n your pei Soluti			he spreadshee eir subjective p			s to
of the s	le will take eau ix statements them at the t	/	Russia will Vietnam w Vietnam's Indonesian	tourism will i government v We can fill	uropean airling axes this yea will encourage uncrease this year	ne next quart r. foreign inves year. ecotourism. of what each	tment this year.
A. abad	Statement 1	Statement 2	Statement 3	Statement 4		Statement b	7
Analyst	statement 1	sidtement L	Statement 3	statement 7	Statement 9	statement o	
2							\
3							-)
4							- /
<u> </u>							/
<u>ь</u>							
7							-
8				+			-
9							+
10				+			-
11							-
12							+
13							-
14							-
15							+
16							-
17				+			-
18							-
19							1
1.1	1	1	1	1	1	1	1

20

The analysts responded with their subjective probabilities

Now we're getting somewhere.

While you haven't yet figured out how to resolve all their differences, you have definitely succeeded at showing where exactly the disagreements lie.

And from the looks of some of the data, it might not be that there is all that much disagreement after all, at least not on some issues.

Let's see what the CEO has to say about this data...

The CEO doesn't see what you're up to

It appears that he doesn't think these results provide anything that can be used to resolve the disagreements among the analysts.

the doesn't think these figures are of any help.

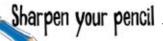
From: CEO, Backwater Investments

To: Head First

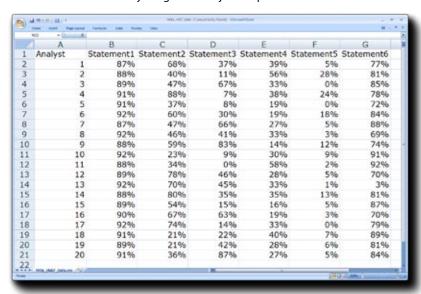
Subject: Your "subjective probabilities"

I'm kind of puzzled by this analysis. What we've asked you to do is resolve the disagreements among our analysts, and this just seems like a fancy way of listing the disagreements.

We know what they are. That's not why we brought you on board. What we need you to do is resolve them or at least deal with them in a way that will let us get a better idea of how to structure our investment portfolio in spite of them.


You should defend your choice of subjective probabilities as a tool for analysis here. What does it get us?

- CEO


Ouch! Is he right?

The pressure's on!

You should probably explain and defend your reason for collecting this data to the CEO...

Is your grid of subjective probabilities...

...any more useful analytically than these angry emails?

From: Political Analyst, Backwater Inv. To: Head First	
Subject: Investing in obscure places: A	Α

Russia, Indonesia, Vietnam. The commit become obsessed with these three plact the answers to all our questions abund, the answers to all our questions abund, respectively. The state of th

If BI doesn't fire the dissenters and troub dispute these truths, the firm might as we From: Senior Research Analyst, Backwater Investments

To: Head First Subject: Rant on Vietnam

For the past six months I've consistently the staff that the Vietnamese governmen going to reduce its taxes this year. And e we've seen from our people on the grour reports confirms this.

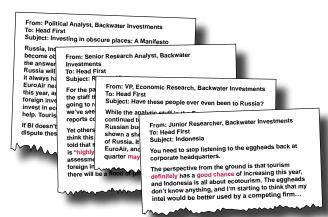
Yet others in the "analytical" community in think this is crazy. I'm a dreamer by the 1 of told that such a gesture or the part of the is "highly unlikely." Well what do they ba assessment or? Clearly the government foreign investment. It takes gathere will be a flood of private investment, and

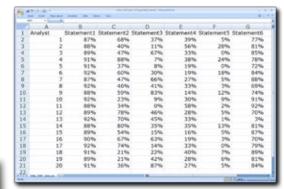
From: VP, Economic Research, Backwal To: Head First Subject: Have these people ever even by

While the analytic stuff in the Economic continued to flourish and produce quality Russian business and government, the r shown a shocking ignorance of the inter of Russia. It's quite unlikely that Russia w EuroAir, and their support of the oil indus quarter may be the most tentative it's ev

From: Junior Researcher, Backwater Investments To: Head First Subject: Indonesia

You need to stop listening to the eggheads back at corporate headquarters.


The perspective from the ground is that tourism definitely has a good chance of increasing this year, and Indonesia is all about ecotourism. The eggheads don't know anything, and i'm starting to think that my intel would be better used by a competing firm...


Why o	r wh	y no	ot?																	
•••••			• • • • • •	 	 ••••	· • • • •	 •••	 												
				 	 	. 	 	 	 	 	 	 	 	 	 	 	 	 	 	

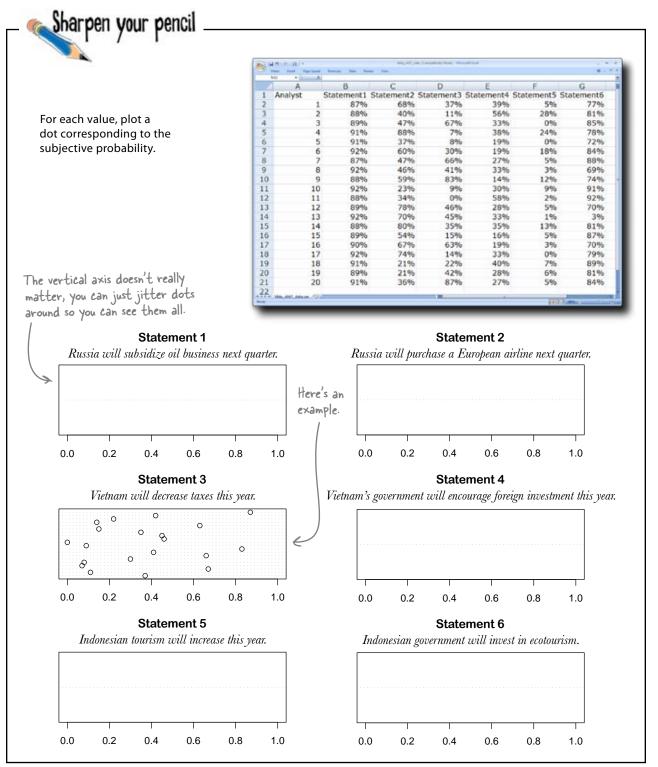
Is your grid of subjective probabilities...

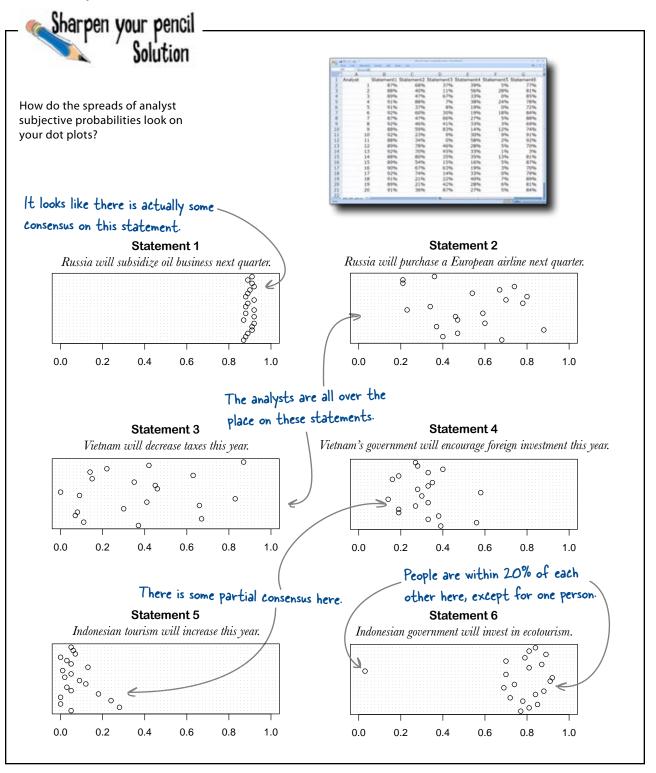
Any more useful analytically than these angry emails?

The subjective probabilities show that some areas are not as contentious as we previously thought.

The subjective probabilities are a precise specification of where there is disagreement and how much of it there is. The analysts can use them to help them figure out what they should focus on to solve their problems.

> From: CEO, Backwater Investments To: Head First


Subject: Visualization request


→ OK, you've persuaded me. But I don't want to read a big grid of numbers. Send me a chart that displays this data in a way that is easier for me to understand.

- CEO

Let's make this data visual!

You've bought some time and can continue your work.

The CEO loves your work

From: CEO, Backwater Investments

To: Head First

Subject: Thank you!

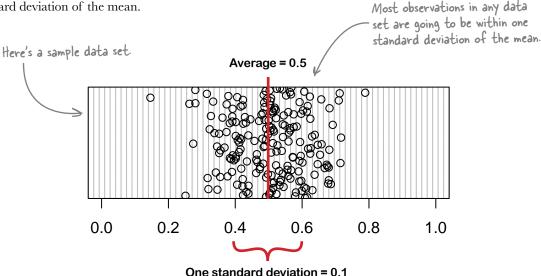
Now this is actually a big help. I can see that there are a few areas where we really should concentrate our resources to get better information. And the stuff that doesn't appear to have real disagreement is just fantastic.

From now on, I don't want to hear anything from my analysts unless it's in the form of a subjective probability (or objective probability, if they can come up with one of those).

Can you rank these questions for me by their level of disagreement? I want to know which ones specifically are the most contentious.— CEO

Subjective probabilities are something that everyone understands but that don't get nearly enough use.

Great data analysts are great communicators, and subjective probabilities are an illuminating way to convey to others exactly what you think and believe.


What metric would measure disagreement and rank the questions so that the CEO can see the most problematic ones first?

The standard deviation measures how far points are from the average

You want to use the **standard deviation**.

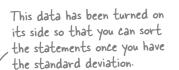
The standard deviation measures how far typical points are from the average (or mean) of the data set.

Most of the points in a data set will be within one standard deviation of the mean.

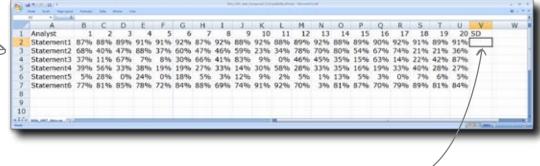
The unit of the standard deviation is whatever it is that you're measuring. In the case above, one standard deviation from the mean is equal to 0.1 or 10 percent. Most points will be 10 percent above or below the mean, although a handful of points will be two or three standard deviations away.

Standard deviation can be used here to measure disagreement. The larger the standard deviation of subjective probabilities from the mean, the more disagreement there will be among analysts as to the likelihood that each hypothesis is true.

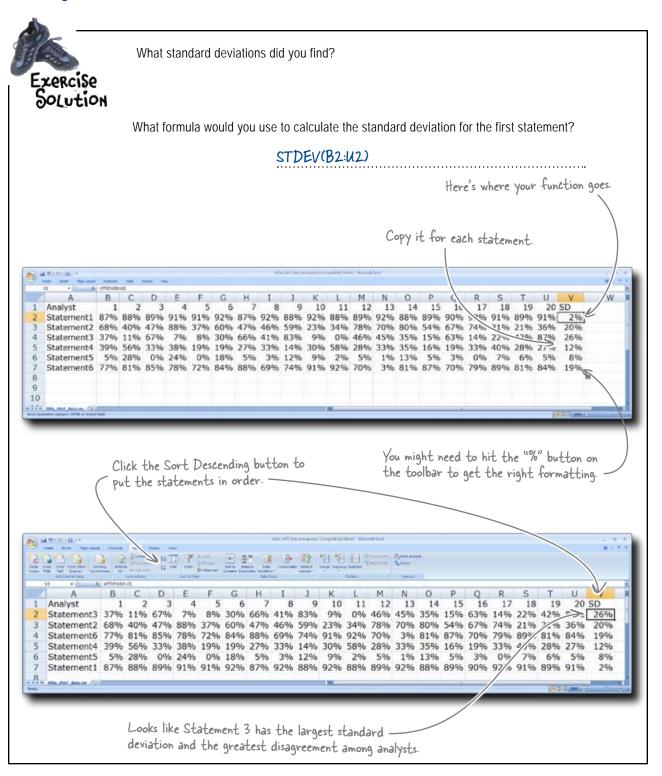
Use the STDEV formula in Excel to calculate the standard deviation.


=STDEV(data range)

For each statement, calculate the standard deviation. Then, sort the list of questions to rank highest the question with the most disagreement.


What formula would you use to calculate the standard deviation for the first statement?

.....



www.headfirstlabs.com/books/hfda/ hfda_ch07_data_transposed.xls

Put your answer here.

Dumb Questions

Q: Aren't subjective probabilities kind of deceptive?

A: Deceptive? They're a lot less deceptive than vague expressions like "really likely." With probability words, the person listening to you can pour all sorts of possible meanings into your words, so specifying the probabilities is actually a much *less* deceptive way to communicate your beliefs.

I mean, isn't it possible or even likely (pardon the expression) that someone looking at these probabilities would get the impression that people are more certain about their beliefs than they actually are?

A: You mean that, since the numbers are in black and white, they might look more certain than they actually are?

Q: That's it.

A: It's a good concern. But the deal with subjective probabilities is the same as any other tool of data analysis: it's easy to bamboozle people with them if what you're trying to do is deceive. But as long as you make sure that your client knows that your probabilities are *subjective*, you're actually doing him a big favor by specifying your beliefs so precisely.

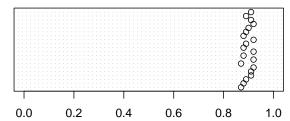
Q: Hey, can Excel do those fancy graphs with the little dots?

A: Yes, but it's a lot of trouble. These graphs were made in a handy little free program called R using the dotchart function. You'll get a taste of the power of R in later chapters.

Good work. I'm going to base my trading strategy on this sort of analysis from now on. If it pans out, you'll definitely see a piece of the upside.

Russia announces that it will sell all its oil fields, citing loss of confidence in business

In a shocking move, Russian president poo-poohs national industry


"Da, we are finished with oil," said the Russian president to an astonished press corps earlier today in Moscow. "We have simply lost confidence in the industry and are no longer interested in pursuing the resource..."

You were totally blindsided by this news

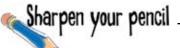
The initial reaction of the analysts to this news is great concern. Backwater Investments is heavily invested in Russian oil, largely because of what you found to be a large consensus on oil's prospects for continued support from the government.

Statement 1
Russia will subsidize oil business next quarter.

But this news could cause the value of these investments to plummet, because people will suddenly expect there to be some huge problem with Russian oil. Then again, this statement could be a strategem by the Russians, and they might not actually intend to sell their oil fields at all.

	harpen your pencil
Doe	es this mean that your analysis was wrong?
••••	
Wh	at should you do with this new information?

What now?


Were you totally off base?

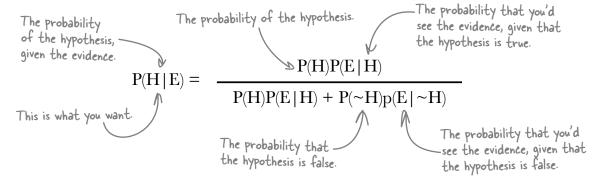
The analysis definitely wasn't wrong. It accurately reflected beliefs that the analysts made with limited data. The problem is simply that the analysts were wrong. There is no reason to believe that using subjective probabilities guarantees that those probabilities will be right.

We need to go back and revise all the subjective probabilities. Now that we have more and better information, our subjective probabilities are likely to be more accurate.

We've picked up a lot of analytic tools so far. Maybe one of them could be useful at figuring out how to revise the subjective probabilities.

Better pick an analytic tool you can use to incorporate this new information into your subjective probability framework. Why would you or wouldn't you use each of these?

Experimental design?
Optimization?
A nice graphic?
Hypothesis testing?
Bayes' rule?


Better pick an analytic tool you can use to incorporate this new information into your subjective probability framework. Why would you or wouldn't you use each of these?

Experimental design?
It's kind of hard to imagine what sort of experiment you could run to get better data. Since all the
analysts are evaluating geopolitical events, it seems that every single piece of data they are looking at
is observational.
Optimization?
There is no hard numerical data! The optimization tools we've learned presuppose that you have
numerical data and a numerical result you want to maximize or minimize. Nothing for optimization here.
A nice graphic?
There's almost always room for a nice data visualization. Once we've revised the subjective probabilities,
we'll certainly want a new visualization, but for now, we need a tool that gives us better numbers.
Hypothesis testing?
There is definitely a role for hypothesis testing in problems like this one, and the analysts might use
it to derive their beliefs about Russia's behavior. But our job is to figure out specifically how the new
data changes people's subjective probabilities, and it's not clear how hypothesis testing would do that.
Bayes' rule?
Now this sounds promising. Using each analyst's first subjective probability as a base rate, maybe we can
use Bayes' rule to process this new information.

Bayes' rule is great for revising subjective probabilities

Bayes' rule is not just for lizard flu! It's great for subjective probabilities as well, because it allows you to incorporate new evidence into your beliefs about your hypothesis. Try out this more generic version of Bayes' rule, which uses H to refer to your **hypothesis** (or base rate) and E to refer to your **new evidence**.

Here's the formula you used to figure out your chances of having lizard flu.

Using Bayes' rule with subjective probabilities is all about asking for the probability that you'd see the evidence, given that the hypothesis is true. After you've disciplined yourself to assign a subjective value to this statistic, Bayes' rule can figure out the rest.

Why go to this trouble? Why not just go back to the analysts and ask for new subjective probabilities based on their reaction to the events?

You already have these pieces of data:

You know this.

The subjective probability that Russia will (and won't) continue to subsidize oil

P(H)

 $P(\sim H)$

You just need to get the analysts

to give you these values:

What are these?

The subjective probability that the news report would (or wouldn't) happen, given that Russia will continue to subsidize oil

 $P(E \mid H)$

 $P(E \mid \sim H)$

You could do that. Let's see what that would mean...

Tonight's talk: Bayes' Rule and Gut Instinct smackdown

Gut Instinct:

I don't see why the analyst wouldn't just ask me for another subjective probability. I delivered like a champ the first time around.

Well, thanks for the vote of confidence. But I still don't appreciate being kicked to the curb once I've given the analyst my first idea.

I still don't get why I can't just give you a new subjective probability to describe the chances that Russia will continue to support the oil industry.

Would anyone ever actually think like this? Sure, I can see why someone would use you when he wanted to calculate the chances he had a disease. But just to deal with subjective beliefs?

I guess I need learn to tell the analyst to use you under the right conditions. I just wish you made a little more intuitive sense.

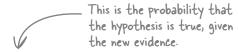
Not that! Man, that was boring...

Bayes' Rule:

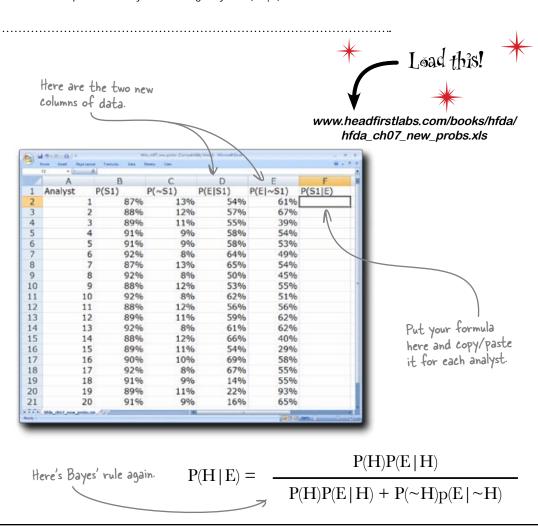
You did indeed, and I can't wait to use your first subjective probability as a base rate.

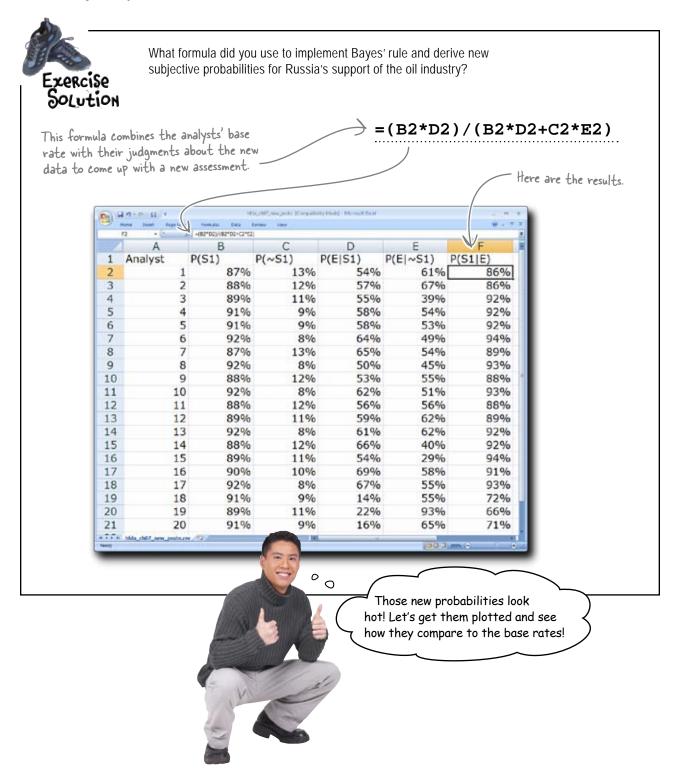
Oh no! You're still really important, and we need you to provide more subjective probabilities to describe the chances that we'd see the evidence given that the hypothesis is either true or untrue.

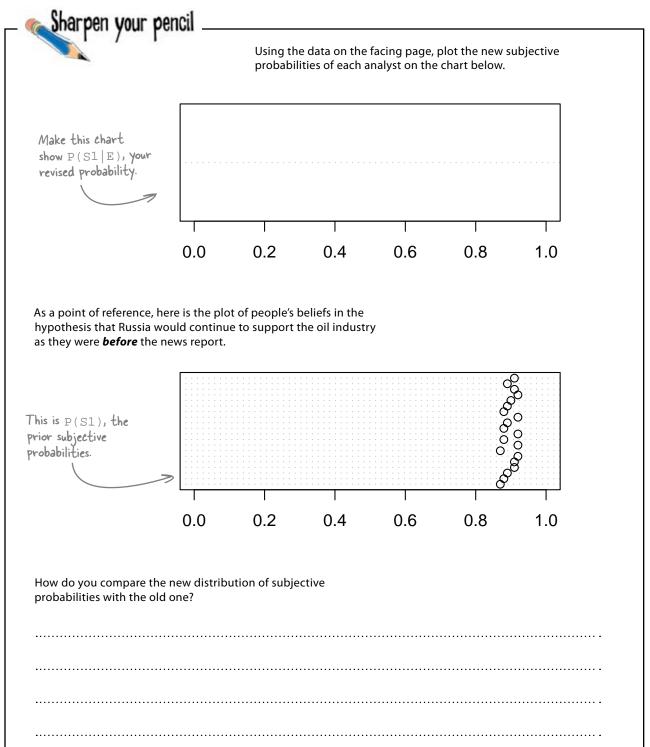
Using me to process these probabilities is a rigorous, formal way to incorporate new data into the analyst's framework of beliefs. Plus, it ensures that analysts won't overcompensate their subjective probabilities if they think they had been wrong.


OK, it's true that analysts certainly don't have to use me every single time they learn anything new. But if the stakes are high, they really need me. If you think you might have a disease, or you need to invest a ton of money, you want to use the analytical tools.

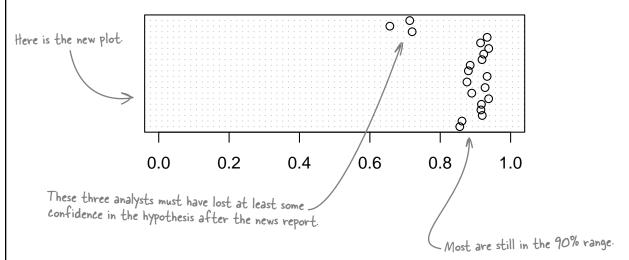
If you want, we can draw 1,000 little pictures of Russia like we did in the last chapter...

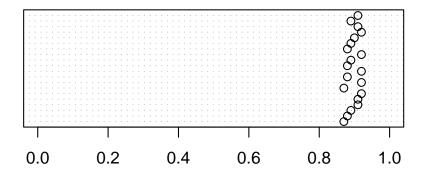



Here's a spreadsheet that lists two new sets of subjective probabilities that have been collected from the analysts.

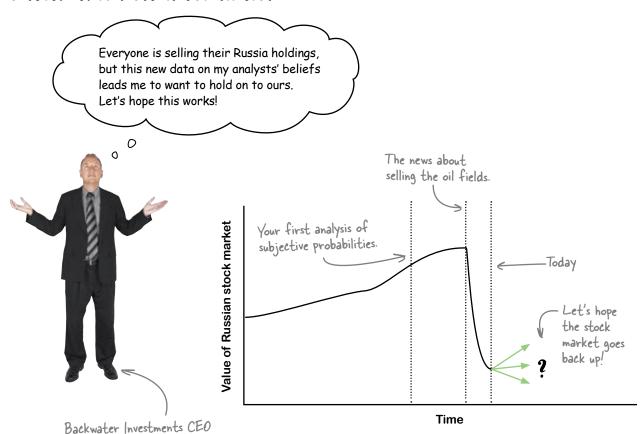

- 1) P(E|S1), which is each analyst's subjective probability of Russia announcing that they'd sell their oil fields (E), given the hypothesis that Russia *will* continue to support oil (S1)
- 2) P(E|~S1), which is each analyst's subjective probability of the announcement (E) given that Russia *won't* continue to support oil (~S1)

Write a formula that implements Bayes' rule to give you P(S1|E).





How does the now distribution of beliefs about Russia's support for the oil industry look?


Here's what people used to think about the hypothesis:

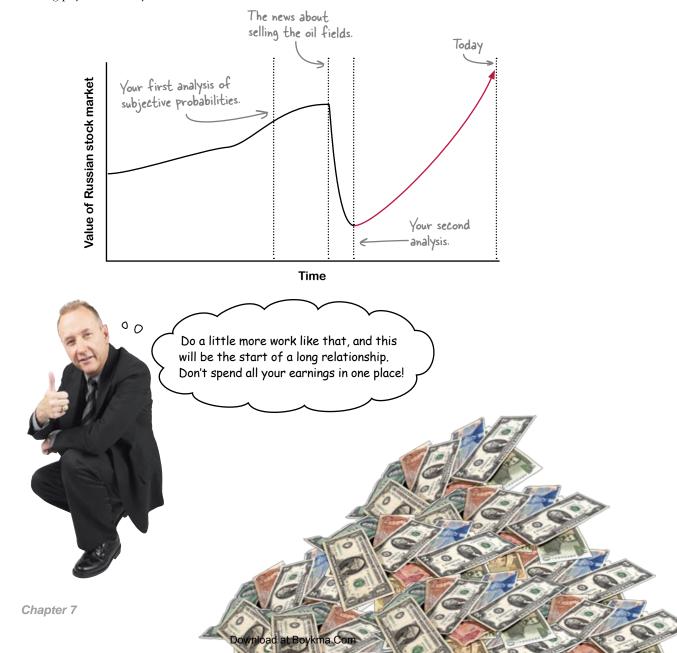
How do you compare the two?

The spread of the new set of subjective probabilities is a little wider, but only three people assign to the hypothesis subjective probabilities that are significantly lower than what they had thought previously. For most people, it still seems around 90% likely that Russia will continue to support oil, even though Russia claims to be selling their oil fields.

The CEO knows exactly what to do with this new information

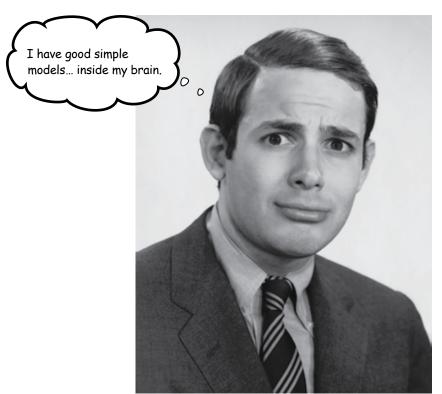
On close inspection, the analysts concluded that the Russian news is likely to report the selling of their oil fields whether it's true that they will stop supporting oil or not.

So the report didn't end up changing their analyses much, and with three exceptions, their new subjective probabilities $[P(S1 \mid E)]$ that Russia would support their oil industry were pretty similar to their prior subjective probabilities [P(S1)] about the same hypothesis.


But are the analysts right?

224

Russian stock owners rejoice!


The analysts were right: Russia was bluffing about selling off their oil fields. And the market rally that took place once everyone realized it was very good for Backwater.

Looks like your subjective probabilities kept heads cool at Backwater Investments and resulted in a big payoff for everyone!

8 heuristics

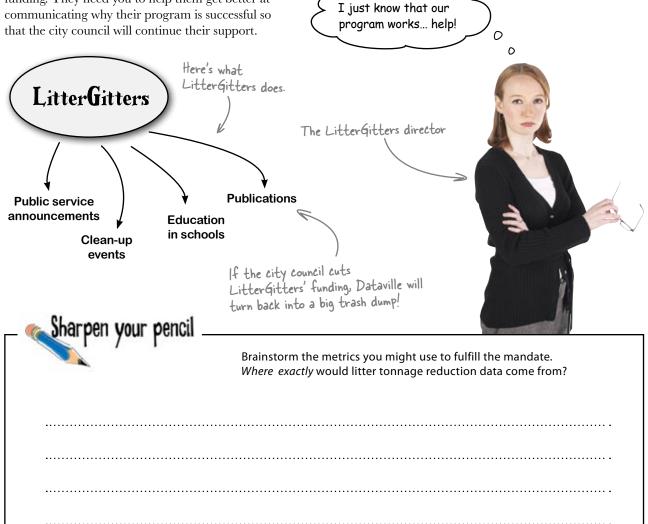
The real world has more variables than you can handle.

There is always going to be data that you can't have. And even when you do have data on most of the things you want to understand, *optimizing* methods are often **elusive** and **time consuming**. Fortunately, most of the actual thinking you do in life is not "rational maximizing"—it's processing incomplete and uncertain information with rules of thumb so that you can make decisions quickly. What is really cool is that these rules can **actually work** and are important (and necessary) tools for data analysts.

Litter&itters submitted their report to the city council

The LitterGitters are a nonprofit group **funded by the Dataville City Council** to run public service announcements to encourage people to stop littering.

They just presented the results of their most recent work to the city council, and the reaction is not what they'd hoped for.


That last comment is the one we're really worried about. It's starting to look as if LitterGitters will be in big trouble very soon if you can't persuade the city council that LitterGitters' public outreach programs have been a success relative to the city council's intentions for it.

The LitterGitters have really cleaned up this town

Before the LitterGitters came along, Dataville was a total mess. Some residents didn't respect their home and **polluted it with trash**, damaging Dataville's environment and looks, but all that changed when LitterGitters began their work.

It'd be **terrible** for the city council to cut their funding. They need you to help them get better at communicating why their program is successful so

How exactly would you collect the data that would show whether the LitterGitters' work had resulted in a reduction in litter tonnage?

We could have garbage men separate litter from normal trash and weigh both repeatedly over time.

Or we could have special collections at places in Dataville that have a reputation for being filled

with litter. Has LitterGitters been making these sort of measurements?

The LitterGitters <u>have been</u> measuring their campaign's effectiveness

LitterGitters have been measuring their results, but they haven't measured the things you imagined in the previous exercise. They've been doing **something else**: surveying the general public. Here are some of their surveys.

Questions for the general public			Your
(Questions for the general public		Your	vei
Questions for the general public		Your	
Questions for the general public	Your	40	
Do you litter in Dataville?	No	/e:	s
Have you heard of the LitterGitters program?	Yes	No	,
If you saw someone littering, would you tell them to throw their trash away in a trash can?	Yes	Ye	s
Do you think littering is a problem in Dataville?	Yes	Ne	,
Has LitterGitters helped you better to understand the importance of preventing litter?	Yes	Ye	s
Would you support continued city funding of LitterGitters' ducational programs?	Yes		_

Their tactics, after all, are all about changing people's **behaviors** so that they stop littering. Let's take a look at a summary of their results...

Questions for the general public	Last year	This year
Do you litter in Dataville?	10%	5%
Have you heard of the LitterGitters program?	5%	90%
If you saw someone littering, would you tell them to throw their trash away in a trash can?	2%	25%
Do you think littering is a problem in Dataville?	20%	75%
Has LitterGitters helped you better to understand the importance of preventing litter?	5%	85%
Would you support continued city funding of LitterGitters' educational programs?	20%	81%

The mandate is to reduce the tonnage of litter

These are the percentages of _ people who responded "yes."

And educating people about why they need to change their behaviors will lead to a reduction in litter tonnage, right? That's the basic premise of LitterGitters, and their survey results do seem to show an increase in public awareness.

But the city council was unimpressed by this report, and you need to help LitterGitters figure out whether they have fulfilled the mandate and then persuade the city council that they have done so.

Does the LitterGitters' results show or suggest a reduction in the tonnage of litter in Dataville?

Does the data show or suggest a litter tonnage reduction because of LitterGitters' work?

It might suggest a reduction, if you believe that people's reported change in beliefs has an impact on litter. But the data itself only discusses public opinion, and there is nothing in it explicitly about litter tonnage.

Tonnage is unfeasible to measure

Of course we don't measure tonnage. Actually weighing litter is way too expensive and logistically complicated, and everyone in the field considers that Databurg 10% figure bogus. What else are we supposed to do besides survey people?

This could be a problem. The city council is expecting to hear evidence from LitterGitters that demonstrates that the LitterGitters campaign has reduced litter tonnage, but all we provided them is this opinion survey.

If it's true that measuring tonnage directly is logistically unfeasible, then the demand for evidence of tonnage reduction is dooming LitterGitters to failure.

The Littergitters director

Give people a hard question, and they'll answer an easier one instead

LitterGitters knows that what they are expected to do is reduce litter tonnage, but they decided not to measure tonnage directly because doing so is such an expense.

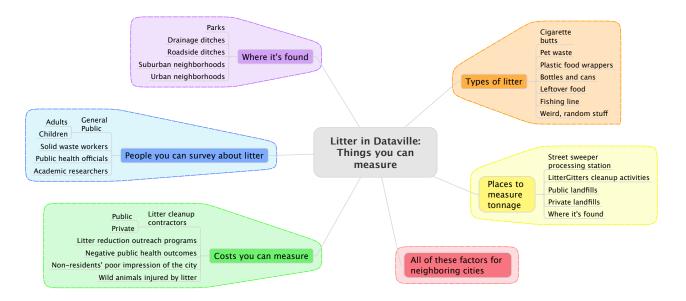
This is complex, expensive, and hard.

You're going to need a big scale to weigh all this...

They've got trash dumps like this all over Dataville.

This is fast, easy, and clear. It's just not what the city council wants.

Reacting to difficult questions in this way is actually a very common and very human thing to do. We all face problems that are hard to tackle because they're "expensive" economically—or *cognitively* (more on this in a moment)—and the natural reaction is to answer a different question.


This **simplified** approach might seem like the totally wrong way to go about things, especially for a data analyst, but the irony is that in a lot of situations it *really works*. And, as you're about to see, sometimes it's the **only option**.

Questions for the general public		Your
Questions for the general public		r
Questions for the general public		r
Questions for the general public	Your answe	r
Do you litter in Dataville?	N	0
Have you heard of the LitterGitters program?	Ye	es .
f you saw someone littering, would you tell them to throw their crash away in a trash can?	Ye	es .
Do you think littering is a problem in Dataville?	Ye	es .
Has LitterGitters helped you better to understand the importance of preventing litter?	Ye	:s
Would you support continued city funding of LitterGitters' educational programs?	Ye	:s

Here are some of the opinion surveys LitterGitters got back from people.

Littering in Pataville is a complex system

Here's one of LitterGitters' internal research documents. It describes things you might want to measure in the world of litter.

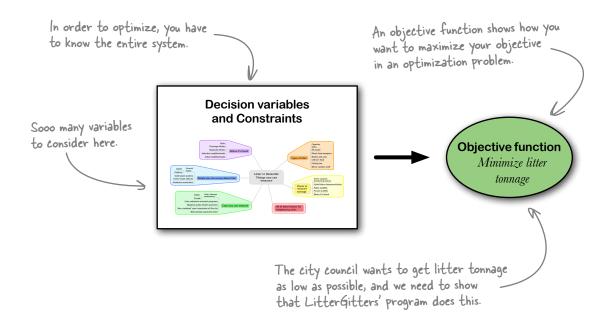
And here is the director's explanation of this big system and the implications that its complexity has for the work of LitterGitters.

From: Director, LitterGitters

To: Head First

Subject: Why we can't measure tonnage

In order to measure tonnage directly, we'd need staff at all the contact points (processing stations, landfills, etc.) at all times. The city workers won't record the data for us, because they already have plenty of work to do.


And staffing the contact points would cost us double what the city already pays us. If we did *nothing* but measure litter tonnage, we still wouldn't have enough money to do it right.

Besides, the city council is all wrong when it focuses on tonnage. Litter in Dataville is actually a complex system. There are lots of people involved, lots of types of litter, and lots of places to find it. To ignore the system and hyper-focus on one variable is a mistake.

You can't build and implement a unified litter-measuring model

Any sort of model you created to try to measure or design an optimal litter control program would have an awful lot of variables to consider.

Not only would you have to come up with a general *quantitative* theory about how all these elements interact, but you'd also have to know how to manipulate *some* of those variables (your **decision variables**) in order to minimize tonnage reduction.

This problem would be a **beast** even if you had all the data, but as you've learned getting all the data is too expensive.

Is giving the city council what they want even possible?

Jill: This situation is a mess. We have a city council asking for something we can't give them.

Frank: Yeah. And even if we could provide the tonnage reduction figure, it would not be of much use. The system is too complex.

Joe: Well, that figure would the satisfy city council.

Jill: Yes, we're not here just to satisfy the council. We're here to reduce litter!

Joe: Couldn't we just make something up? Like do our own "estimate" of the tonnage?

Frank: That's an option, but it's pretty dicey. I mean, the city council seems like a really tough group. If we were to make up some subjective metric like that and have it masquerade as a tonnage metric, they might flip out on us.

Jill: Making up something is a sure way to get LitterGitters' funding eliminated. Maybe we could persuade the city council that opinion surveys really are a solid proxy for tonnage reduction?

Frank: LitterGitters already tried that. Didn't you see the city council screaming at them?

Jill: We could come up with an assessment that incorporates *more* variables than just public opinion. Maybe we should try to collect together every variable we can access and just make subjective guesses for *all the other variables*?

Frank: Well, maybe that would work...

Stop! We're making this way too complicated. Why can't we just pick one or two more variables, analyze them too, and leave it at that?

You can indeed go with just a few more variables.

And if you were to assess the effectiveness of LitterGitters by picking one or two variables and using them to draw a conclusion about the whole system, you'd be employing a **heuristic**...

Heuristics are a middle ground between going with your gut and optimization

Do you make decisions impulsively, or with a few well-chosen pieces of key data, or do you make decisions by building a model that incorporates every scrap of relevant data and yields the perfect answer?

Your answer is probably "All of the above," and it's important to realize that these are all different ways of thinking.

Intuition is seeing one option.

Intuition Lan be scary for analysts.

Most of your thinking takes place here.

Analysts try to avoid relying on intuition if they can, but decisions you make really quickly or without any data often have to be intuitive.

If you've solved an optimization problem, you've found the answer or answers that represent

Heuristics are seeing a few options.

Heuristics

Which will you

Maybe you don't need to incorporate all the data.

use for your data

analysis problems?

236

function.

heuristic.

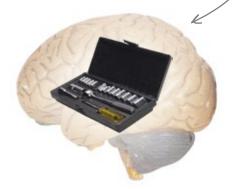
the maximum or minimum of your objective

And for data analysts, optimization is a sort of ideal. It would be elegant and beautiful if all your analytic problems could be definitively solved. **But most of your thinking will be**

Scholar's Corner

Heuristic I. (Psychological definition.) Substituting a difficult or confusing attribute for a more accessible one. 2. (Computer science definition.) A way of solving a problem that will tend to give you accurate answers but that does not guarantee optimality.

Optimization is seeing *all* the options.


Optimization

Optimization is an ideal for analysts

Is "optimization" even in here?

Some psychologists even argue that *all* human reasoning is heuristic and that **optimization is an ideal** that works only when your problems are *ultra-specified*.

But if *anyone's* going to have to deal with an ultraspecified problem, it'll be a **data analyst**, so don't throw away your Solver just yet. Just remember that well-constructed heuristic decision-making protocols need to be part of your analytic toolkit.

thing "guesswork"?

Q: It seems weird that you'd have a decision procedure that didn't guarantee a correct answer and call it "data analysis." Shouldn't you call that sort of

A: Now that wouldn't be very nice! Look, data analysis is all about breaking down problems into manageable pieces and fitting mental and statistical models to data to make better judgements. There's no guarantee that you'll always get the right answers.

Can't I just say that I'm always trying to find optimal results? If I've got to dabble in heuristic thinking a little, fine, but my goal is optimality?

A: That's fair to say. You certainly don't want to use heuristic analytical tools when better optimizing tools are available and feasible. But what is important to recognize is that heuristics are a fundamental part of how you think and of the methods of data analysis.

So what's the difference between the psychological and the computer science definition of "heuristics"?

They're actually really similar. In computer science, heuristic algorithms have an ability to solve problems without people being able to *prove* that the algorithm will always get the right answer. Many times, heuristic algorithms in computer science can solve problems more quickly and more simply than an algorithm that guarantees the right answer, and often, the only algorithms available for a problem are heuristic.

What does that have to do with psychology?

Dumb Questions

A: Psychologists have found in experimental research that people use cognitive heuristics all the time. There is just too much data competing for our attention, so we have to use rules of thumb in order to make decisions. There are a number of classic ones that are part of the hard-wiring of our brain, and on the whole, they work really well.

Isn't it kind of obvious that human thinking isn't like optimization?

A: It depends on who you talk to. People who have a strong sense of humans as rational creatures might be upset by the notion that we use quick and dirty rules of thumb rather than think through all our sensory input in a more thorough way.

So the fact that a lot of reasoning is heuristic means that I'm irrational?

A: It depends on what you take to be the definition of the word "rational." If rationality is an ability to process every bit of a huge amount of information at lightning speed, to construct perfect models to make sense of that information, and then to have a flawless ability to implement whatever recommendations your models suggest, then yes, you're irrational.

That is a pretty strong definition of "rationality."

A: Not if you're a computer.

That's why we let computers do data analysis for us!

A: Computer programs like Solver live in a cognitive world where you determine the

inputs. And your choice of inputs is subject to all the limitations of your own mind and your access to data. But within the world of those inputs, Solver acts with perfect rationality.

And since "All models are wrong, but some are useful," even the optimization problems the computer runs look kind of heuristic in the broader context. The data you choose as inputs might never cover every variable that has a relationship to your model; you just have to pick the important ones.

Think of it this way: with data analysis, it's all about the **tools**. A good data analyst knows how to use his tools to manipulate the data in the context of solving real problems. There's no reason to get all fatalistic about how you aren't perfectly rational. Learn the tools, use them wisely, and you'll be able to do a lot of great work.

But there is no way of doing data analysis that guarantees correct answers on all your problems.

No, there isn't, and if you make the mistake of thinking otherwise, you set yourself up for failure. Analyzing where and how you *expect* reality to deviate from your analytical models is a big part of data analysis, and we'll talk about the fine art of managing error in a few chapters.

So heuristics are hard-wired into my brain, but I can make up my own, too?

A: You bet, and what's really important as a data analyst is that you know it when you're doing it. So let's give it a try...

Use a fast and frugal tree

Here's a heuristic that describes different ways of dealing with the problem of having trash you need to get rid of. It's a really simple rule: if there's a trash can, throw it in the trash can. Otherwise, wait until you see a trash can.

This schematic way of describing a heuristic is called a **fast and frugal tree**. It's fast because it doesn't take long to complete, and it's frugal because it doesn't require a lot of cognitive resources.

The City Council's heuristic

Has the tonnage of litter been reduced after LitterGitters?

Keep funding

LitterGitters

Put it in my pocket and

go somewhere else.

Now is there a

trash can?

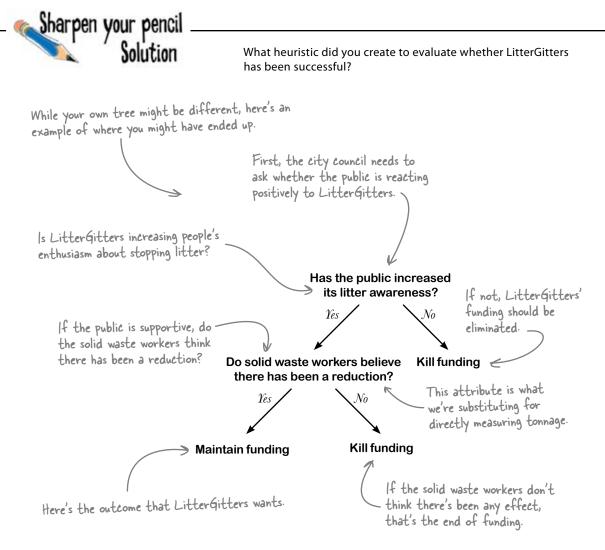
I'm done with my food wrapper. Is there a trash can nearby?

Throw it in the

trash can.

What the city council needs is its own heuristic to evaluate the quality of the work that LitterGitters has been doing. Their own heuristic is unfeasible (we'll have to persuade them of that), and they reject LitterGitters' current heuristic.

Can you draw a fast and frugal tree to represent a better heuristic? Let's talk to LitterGitters to see what they think about a more robust decision procedure.


Stop funding

LitterGitters

Is there a simpler way to assess LitterGitters' success?

Using a heuristic approach to measure LitterGitters' work would mean picking one or more of these variables and adding them to your Which of these variables can you add to your analysis to give a fuller picture of LitterGitters' effectiveness? analysis. What does the LitterGitters director think would be the best approach? Cigarette Drainage ditches butts Roadside ditches Pet waste Where it's found Suburban neighborhoods Plastic food wrappers Urban neighborhoods Bottles and cans Types of litter Fishing line Weird, random stuff Adults General Children Litter in Dataville: Solid waste workers Things you can People you can survey about litter Public health officials Street sweeper measure processing station Academic researchers LitterGitters cleanup activities Places to Public landfills measure Private landfills tonnage Litter cleanup Where it's found Public contractors Private Litter reduction outreach programs Negative public health outcomes Costs you can measure All of these factors for Non-residents' poor impression of the city neighboring cities Wild animals injured by litter You just can't leave out public opinion surveys. And, like I've said, there is just no way to weigh all the litter in order to make a good comparison. But maybe you could just poll the solid waste workers. The biggest problem is cigarette butts, and if we periodically poll the street sweepers and landfill workers about how many butts they're seeing, we'd have a not totally complete but still pretty solid grip on what is happening with litter.

I am looking forward to seeing that report I hear you redid. But I'm expecting you to be like all the other nonprofits that get Dataville money... a bunch of incompetents.

It sounds as if at least one of the city council members has **already made up his mind**. What a jerk. This guy totally has the wrong way of looking at the work of LitterGitters.



0

- City council member

Sharpen your pencil

This city council member is using a heuristic. Draw a diagram to describe his thought process in **forming his expectation** about LitterGitters. You need to understand his reasoning if you are going to be able to persuade this guy that your heuristic assessment ideas are valid.

Stereotypes are heuristics

Stereotypes are definitely heuristics: they don't require a lot of energy to process, and they're superfast. Heck, with a stereotype, you don't even need to collect data on the thing you're making a judgement about. As heuristics, **stereotypes** work. But in this case, and in a lot of cases, stereotypes lead to poorly reasoned conclusions.

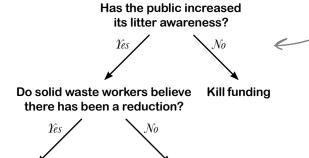
Not all heuristics work well in every case. A fast and frugal rule of thumb might help get answers for some problems while predisposing you to make inadequate judgements in other contexts.

How do I judge

LitterGitters?

244

Maybe we can get some data to describe what the sanitation workers think about what is happening with litter. Then we can present our original analysis along with our decisions heuristic and new data to the city council.



Let's see what those sanitation workers have to say...

Your analysis is ready to present

Between your heuristic and the data you have, including the just-received responses from the sanitation workers below, you're ready to start explaining what you see to the city council.

Here's how you decided the city council should assess the work of LitterGitters.

Kill funding

tere's our original data describing the attitudes of the general public about litter.

there's some new data describing the sanitation workers' impressions of litter in Dataville since LitterGitters began their program.

Maintain funding

Questions for the general public	Last year	This year
Do you litter in Dataville?	10%	5%
Have you heard of the LitterGitters program?	5%	90%
If you saw someone littering, would you tell them to throw their trash away in a trash can?	2%	25%
Do you think littering is a problem in Dataville?	20%	75%
Has LitterGitters helped you better to understand the importance of preventing litter?	5%	85%
Would you support continued city funding of LitterGitters' educational programs?	20%	81%

Questions for the sanitation workers	This year
Have you noticed a reduction in litter coming into Dataville landfills since LitterGitters began their work?	75%
Are there fewer cigarette butts being collected off the streets since LitterGitters began their work?	90%
Have high-litter areas (downtown, city parks, etc.) seen a reduction in litter since LitterGitters began their work?	30%
Is littering still a significant problem in Dataville?	82%

We can't compare this figure to last year, because we just started collecting data for this report.

These numbers represent the percentage of people who answered "yes."

Sharpen your pencil		
	Answer the following questions to your work with LitterGitters.	from the city council about
Why can't you measure tonnage directly?		
	affe and	
Can you prove that the campaign had an	ellect?	
Can you guarantee that your tactics will c	continue to work?	
Why not spend money on cleanup rather	than education?	
		11 1
You guys are just as incompetent as the c	others.	100

How did you respond to the city council?

Why can't you measure tonnage directly?

We can measure tonnage directly. The problem with doing it, though, is that it'd be too expensive.

It'd cost twice the amount of money you actually pay LitterGitters to do their work. So the best

course of action is to use this heuristic to assess performance. It's simple but in our belief accurate.

Can you prove that the campaign had an effect?

All the data is observational, so we can't prove that the increase in awareness of the general public

about litter and the reduction that sanitation workers believe has taken place is the result of

LitterGitters. But we have good reasons to believe that our program was the cause of these results.

Can you guarantee that your tactics will continue to work?

There are never guarantees in life, but as long as we can sustain

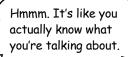
the improved public awareness that came out of our outreach

program, it's hard to imagine that people will suddenly resume littering more.

Why not spend money on cleanup rather than education?

But in that case, your objective wouldn't be to reduce litter, because you'd

be doing nothing to get people to stop littering. The objective would be to


clean it up as fast as you can, and that's not what LitterGitters does.

You guys are just as incompetent as the others.

We can't speak for other nonprofits, but we have a crystal clear idea of

what we're doing and how to measure the results, so we're definitely not

incompetent. When did you say you were up for reelection?

0

Looks like your analysis impressed the city council members

Memorandum Re: LitterGitters and litter in Dataville

The city council is pleased to renew the contract of LitterGitters, thanks to the excellent work from the Head First data analyst. We recognize that our previous assessment of the work of LitterGitters did not adequately treat the whole issue of litter in Dataville, and we discounted the importance of public opinion and behavior. The new decision procedure you provided is excellently designed, and we hope the LitterGitters continue to live up to the high bar they have set for themselves. LitterGitters will receive increased funding from the Dataville City Council this year, which we expect will help...

Thanks so much for your help. Now there is so much more we'll be able to do to get the word out about stopping litter in Dataville. You really saved LitterGitters!

Dataville will stay clean because of your analysis.

Thanks to your hard work and subtle insight into these analytical problems, you can pat yourself on the back for keeping Dataville neat and tidy.

9 histograms

Most of the action in this city concentrates right here. That's why I'm so tall.

0

So what? The important work is done in this area. If you understood the landscape, you'd see why!

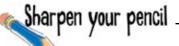
How much can a bar graph tell you?

There are about a zillion ways of **showing data with pictures**, but one of them is special. **Histograms**, which are kind of similar to bar graphs, are a super-fast and easy way to summarize data. You're about to use these powerful little charts to measure your data's **spread**, **variability**, **central tendency**, and more. No matter how large your data set is, if you draw a histogram with it, you'll be able to "see" what's happening inside of it. And you're about to do it with a new, free, crazy-powerful **software tool**.

Your annual review is coming up

You've been doing some really excellent analytical work lately, and it's high time you got what's coming to you.

The powers that be want to know what you think about your own performance.


Oh boy, a self evaluation.

Starbuzz Analyst Self-review Thank you for filling out our self-review! This document is important for < our files and will help determine your future at Starbuzz. Date Analyst Name Circle the number that represents how well-developed you consider your abilities to be. A low score means you think you need some help, and a high score means you think your work is excellent. The overall quality of your analytical work. 5 Your ability to interpret the meaning and importance of past events. 5 3 Bet you'd score higher now than you would Your ability to make level-headed judgements about the future. have in chapter 11 5 Quality of written and oral communication. 4 5 3 Your ability to keep your client well-informed and making good choices.

Your work is totally solid.

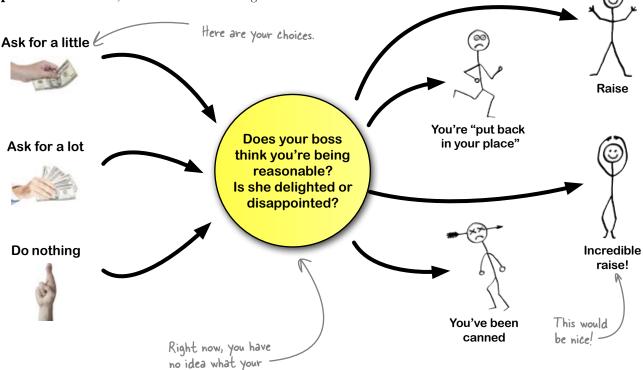
Not a literal pat on the back, though... something more. Some sort of *real* recognition. But what kind of recognition? And how do you go about actually getting it?

You deserve a pat on the back.

You'd better brainstorm about strategies to get recognized. Write down how you'd respond to each of these questions.

ocen valuable,	ne'll reward you, right?			
				· · · · · · · · · · · · · · · · · · ·
Should you give little? Then den	yourself super-positive fe and a big raise?	edback, and maybe even	exaggerate your talents a	
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
				······································
				······································
	n a data-based way of dec			······································
Can you envisio		iding on how to deal with		
Can you envisio	n a data-based way of dec	iding on how to deal with		

We so deserve a raise. But how do we get the boss to give it to us?


0

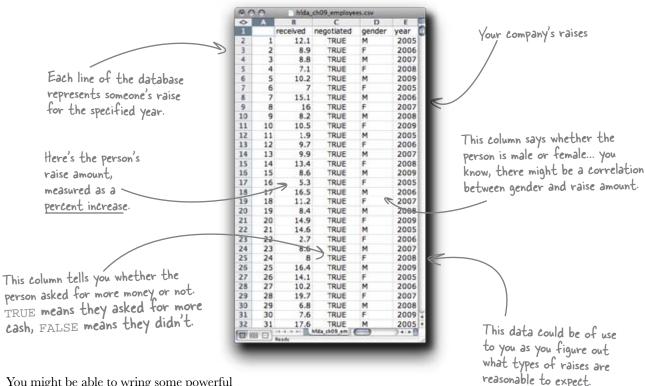
Anything could happen.

However you answered the questions on the last page, we think you should go for more money. You're not doing this hard work for your health, after all.

Going for more cash could play out in a bunch of different ways

People can be skittish about trying to get more money from their bosses. And who can blame them? There are lots of **possible outcomes**, and not all of them are good.

Could research help you predict the outcomes?


Even though your case is unique to you, it still might make sense to get an idea of your boss's **baseline expectations**.

boss will think or do.

Here's some data on raises

Because you're so plugged in to Starbuzz's data, you have access to some sweet numbers: Human Resource's records about raises for the past three years.

You might be able to wring some powerful insights out of this data. If you assume that your boss will act in a similar way to how previous bosses acted, this data could tell you what to expect.

Problem is, with approximately 3,000 employees, the data set is pretty **big**.

You're going to need to do something to make the data useful.

How would you deal with this data? Could you manage it to make it more useful? **Jim:** We should forget about the data and just go for as much as we can get. Nothing in there will tell us what they think we're worth. There's a range of numbers in the boss's head, and we need to figure out how to get the upper end of that range.

Joe: I agree that most of the data is useless to tell us what they think *we* are worth, and I don't see how we find out. The data will tell us the average raise, and we can't go wrong shooting for the average.

Jim: The **average**? You've got to be joking. Why go for the middle? Aim higher!

Frank: I think a more subtle analysis is in order. There's some rich information here, and who knows what it'll tell us?

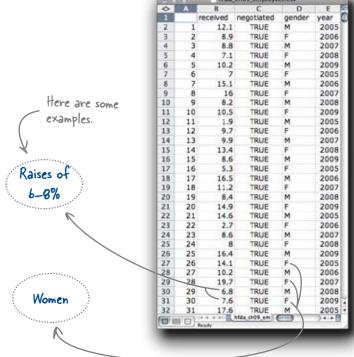
Joe: We need to stay risk-averse and follow the herd. The middle is where we find safety. Just average the Raise column and ask for that amount.

Jim: That's a complete cop-out!

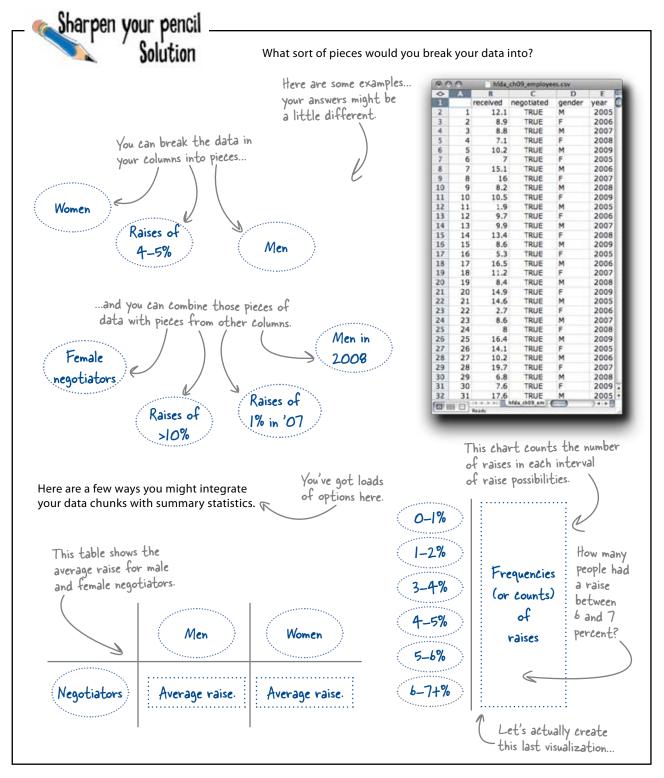
Frank: Look, the data shows whether people negotiated, the year of the raise, and people's genders. All this information can be useful to us if we just massage it into the right format.

Jim: OK, smarty pants. Show me.

Frank: Not a problem. First we have to figure out how to collapse all these numbers into figures that make more sense...


Better summarize the data. There's just too much of it to read and understand all at once, and until you've summarized the data you don't really know what's in it.

Start by breaking the data down into its basic constituent pieces. Once you have those pieces, then you can look at averages or whatever other summary statistic you consider useful. Where will you begin your summary of this data?


Sharpen your pencil

Draw pictures here to represent how you'd split the data into smaller pieces. As you know, much of analysis consists of taking information and breaking it down into smaller, more manageable pieces.

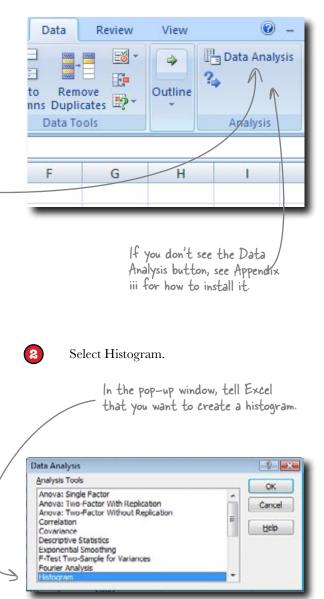
Draw a picture to describe how you would break these data fields down into smaller elements.

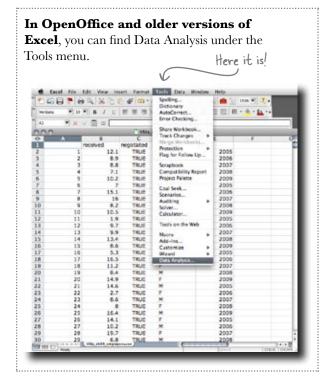
What statistics could you use to summarize these elements? Sketch some tables that incorporate your data fields with summary statistics.

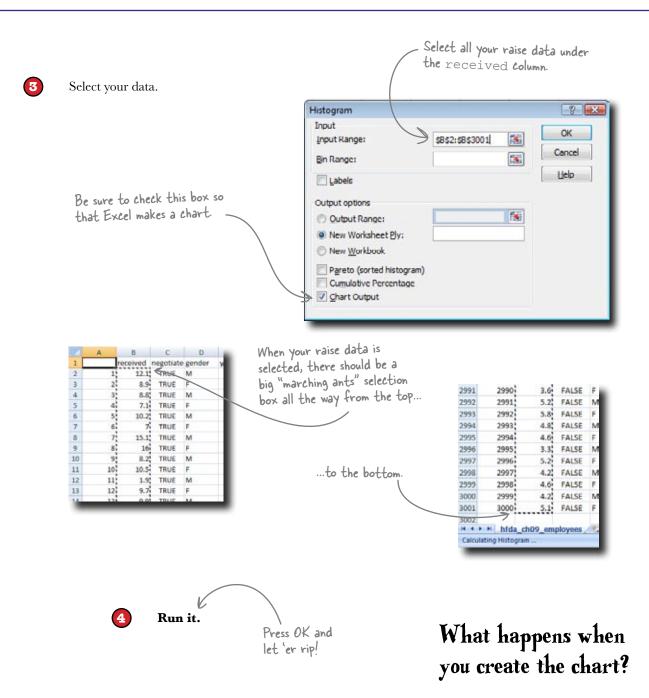
It sure is fun to imagine summarizing these pieces of the data, but here's a thought. How about we actually do it?

Using the groupings of data you imagined, you're ready to start summarizing.

When you need to slice, dice, and summarize a complex data set, you want to use your best software tools to do the dirty work. So let's dive in and make your software reveal just what's going on with all these raises.

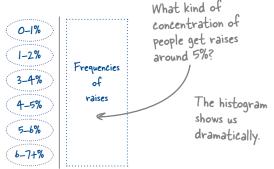

A visualization of the number of people who fall in each category of raises will enable you to *see* the whole data set at once.

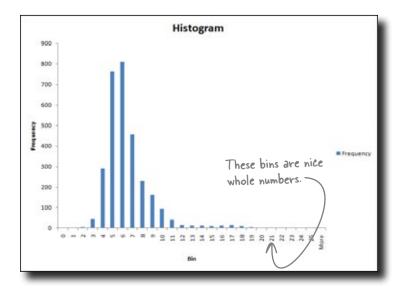

So let's create that summary... or even better, let's do it **graphically**.

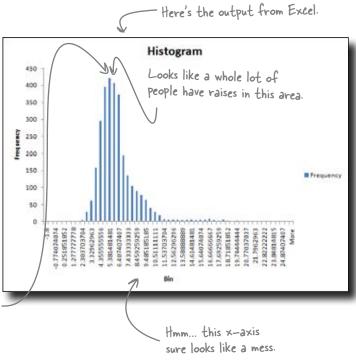


Open the Data Analysis dialogue box.

With your data open in Excel, click the Data Analysis button under the Data tab.



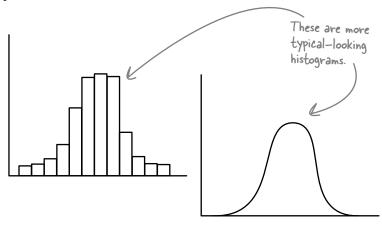

Histograms show frequencies of groups of numbers


Histograms are a powerful visualization because, no matter how large your data set is, they show you the **distribution** of data points across their range of values.

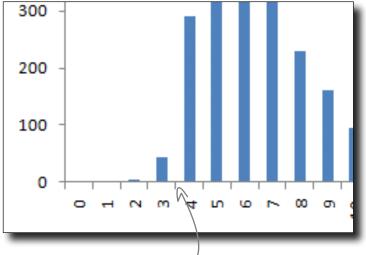
For example, the table you envisioned in the last exercise would have told you how many people received raises at about 5 percent.

This histogram shows graphically how many people fall into each raise category, and it concisely shows you what people are getting across the spectrum of raises.

On the other hand, there are some problems with what Excel did for you. The default settings for the **bins** (or "class intervals") end up producing messy, noisy x-axis values. The graph would be easier to read with plain integers (rather than long decimals) on the x-axis to represent the bins.


Sure, you *can* tweak the settings to get those bins looking more like the data table you initially envisioned.

But even this histogram has a serious problem. Can you spot it?

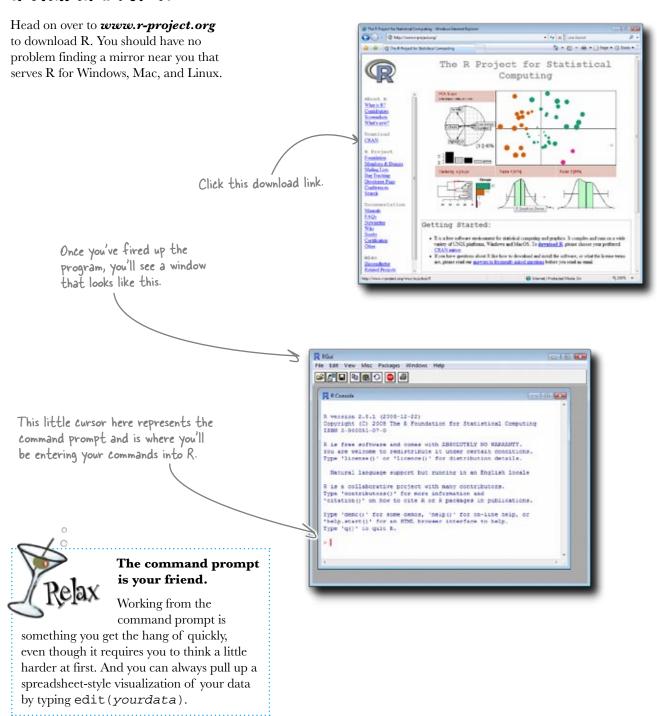

Gaps between bars in a histogram mean gaps among the data points

In histograms, gaps mean that there is data missing between certain ranges. If, say, no one got a raise between 5.75 percent and 6.25 percent, there might be a gap. If the histogram showed that, it might really be worth investigating.

In fact, there will always be gaps if there are more bins than data points (unless your data set is the same number repeated over and over).

Does this gap mean that there are no people who got raises between 3.3% and 3.8%?

That's exactly what the gap *should* mean, at least if the histogram is written correctly. If you assumed this histogram was correct, and that there were gaps between these values, you'd get the totally wrong idea. You need a software tool to create a better histogram.


The problem with Excel's function is that it creates these messy, artificial breaks that are really deceptive.

And there's a technical workaround for the issues (with Excel, there's almost always a workaround if you have the time to write code using Microsoft's proprietary language).

But it's chapter 9, and you've been kicking serious butt. You're ready for a **software tool** with more power than Excel to manage and manipulate statistics.

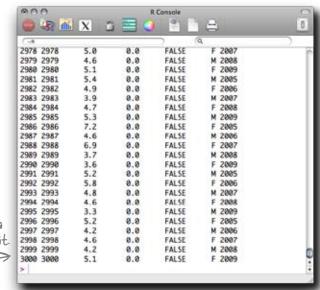
The software you need is called **R**. It's a free, open source program that might be the future of statistical computing, and you're about to dive into it!

Install and run R

Load data into R

For your first R command, try loading the *Head First Data Analysis* script using the source command:

source("http://www.headfirstlabs.com/books/hfda/hfda.R")

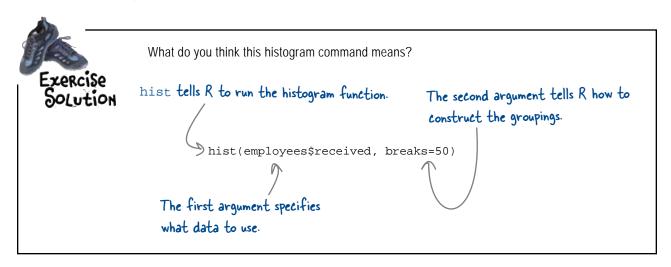

That command will load the raise data you need for R. You'll need to be connected to the Internet for it to work. If you want to save your R session so that you can come back to the *Head First* data when you're not connected to the Internet you can type save.image().

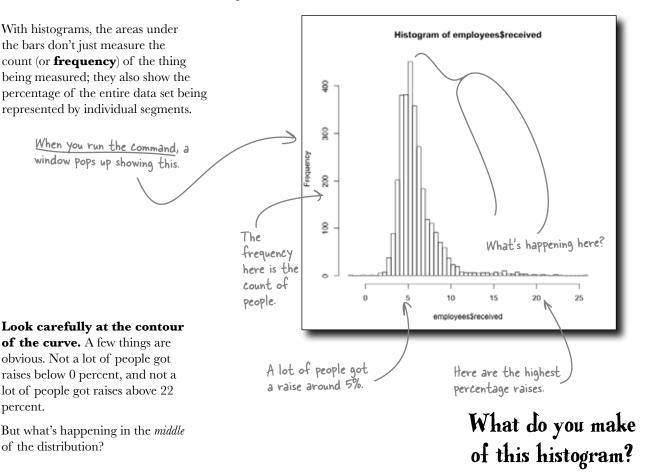
So what did you download? First, take a look at the data frame from your download called "Employees." Just type this command and press Enter:

employees

Type the name of the data frame to get R to display it.

The output you see on the right is what R gives you in response.


The command returns a listing of all the rows in the data frame.


Generate a histogram in R by typing this command: hist(employees\$received, breaks=50)

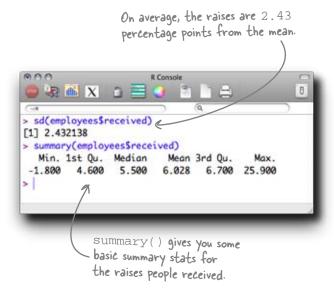
What does this mean?

What do you think the various elements of the command mean? Annotate your response.

R creates beautiful histograms

These commands will tell you a little more about your data set and **what people's raises look like**. What happens when you run the commands?

sd(employees\$received) Why do you think R responds to each of these the way it does? summary(employees\$received) Type help(sd) and help(summary) to find out what the commands do.	
What do the two commands do?	
Look closely at the histogram. How does what you see on the histogram compare with what R tells you from these two commands?	

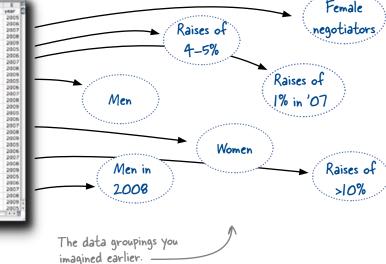

You just ran some commands to illustrate the summary statistics for your data set about raises. What do you think these commands did?

What do the two commands do?

The sd command returns the standard deviation of the data range you specify, and the summary() command shows you summary statistics about the received column.

Look closely at the histogram. How does what you see on the histogram compare with what R tells you from these two commands?

The histogram does a good job of visually showing mean, median, and standard deviation. Looking at it, you can't see the exact figures, but you can get a sense of those numbers by looking at the shape of the curve.


Joe: If the histogram were symmetrical, the mean and median would be in the same place—in the dead center.

Frank: Right. But in this case, the small hump on the right side is pulling the mean away from the center of the larger hump, where most of the observations are.

Joe: I'm struggling with those two humps. What do they **mean**?

Frank: Maybe we should take another look at those pieces of data we identified earlier and see if they have any relevance to the histogram.

Joe: Good idea. 4-5%

Shar	pen	your	pencil
	•	,	

Can you think of any ways that the groups you identified earlier might explain the two humps on the histogram?

How might the groupings of data you identified earlier account for the two humps on your histogram?

There could be variation among years: for example, raises in 2007 could be on average much higher than raises from 2006. And there could be gender variation, too: men could, on average, get higher raises than women, or vice versa. Of course, all the data is observational, so any relationships you discover won't necessarily be as strong as what experimental data would show.

there are no Questions

So it seems like we have a lot of flexibility when it comes to how the histograms look.

A: It's true. You should think of the very act of creating a histogram as an interpretation, not something you do *before* interpretation.

Q: Are the defaults that R uses for creating a histogram generally good?

Generally, yes. R tries to figure out the number of breaks and the scale that will best represent the data, but R doesn't understand the meaning of the data it's plotting. Just as with the summary functions, there's nothing wrong with running a quick and dirty histogram to see what's there, but before you draw any big conclusions about what you see, you need to use the histogram (and redraw the histogram) in a way that remains mindful of what you're looking at and what you hope to gain from your analysis.

Are either of those humps the "bell curve?"

A: That's a great question. Usually, when we think of bell curves, we're talking about the normal or Gaussian distribution. But there are other types of bell-shaped distributions, and a lot of other types of distributions that aren't shaped like a bell.

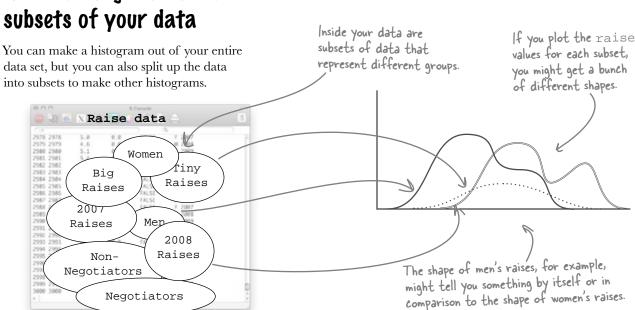
Then what's the big deal about the normal distribution?

A: A lot of powerful and simple statistics can come into play if your data is normally distributed, and a lot of natural and business data follows a natural distribution (or can be "transformed" in a way that makes it naturally distributed).

So is our data normally distributed?

A: The histogram you've been evaluating is definitely not normally distributed. As long as there's more than one hump, there's no way you can call the distribution bell-shaped.

But there are definitely two humps in the data that look like bells!


A: And that shape must have some sort of meaning. The question is, why is the distribution shaped that way? How will you find out?

Can you draw histograms to represent small portions of the data to evaluate individually? If we do that, we might be able to figure out why there are two humps.

A: That's the right intuition. Give it a shot!

Can you break the raise data down in a way that isolates the two humps and explains why they exist?

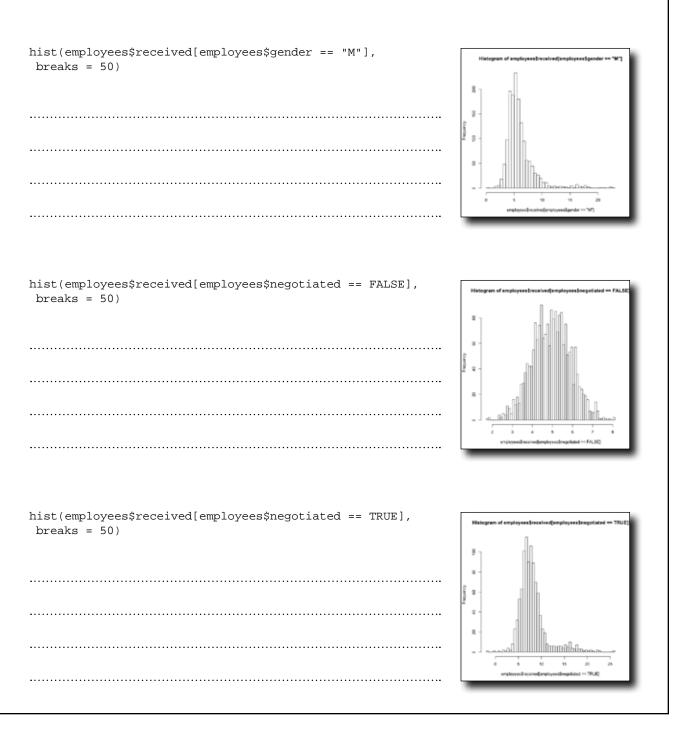
Make histograms from

Let's make a bunch of histograms that describe subsets of the raise data. Maybe looking at these other histograms will help you figure out what the two humps on the raise histogram mean. Is there a group of people who are earning more in raises than the rest?

To start, look at this histogram command and annotate its syntax. What do you think its components mean?

```
hist(employees$received[employees$year == 2007], breaks = 50)
```

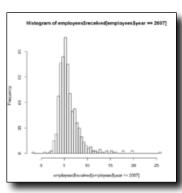
– Write down here what you


Run the above command each of these commands. What do you see? The results are on the next page, where you'll write down your interpretations.

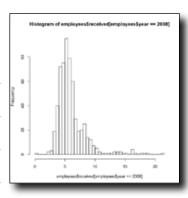
```
hist(employees$received[employees$year == 2008], breaks = 50)
hist(employees$received[employees$qender == "F"], breaks = 50)
hist(employees$received[employees$gender == "M"], breaks = 50)
hist(employees$received[employees$negotiated == FALSE], breaks = 50)
hist(employees$received[employees$negotiated == TRUE], breaks = 50)
```


These histograms represent the raises for different subgroups of your employee population. What do they tell you?

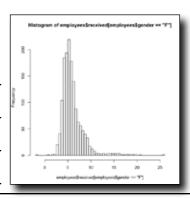
The hist() command makes a histogram. hist(employees\$received[received is the set of values you want plotted in the histogram. employees\$year == 20071, breaks = 5	Breaks are the number of bars in the histogram
These brackets are the subse- operator, which extracts a subset of your data.	W	Histogram of employees/received/employees/year == 2607]
hist(employees\$received[breaks = 50)	employees\$year == 2008],	Histogram of employeesSrecebred(employeesSyear == 2006)
		R S S NO 15 20
		employment received for piloyment for an = 2000)
breaks = 50)	employees\$gender == "F"],	Histogram of employeesSreceived(employeesSgender ** "F"]
•••••		emptryrendrece/redjumptryrendigundur == "F"



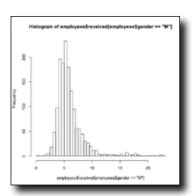
You looked at the different histograms in search of answers to help you understand who is getting what raises. What did you see?


hist(employees\$received[employees\$year == 2007],
breaks = 50)

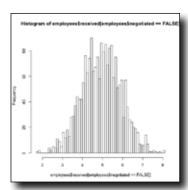
This histogram selects only raises for 2007 and has the same basic shape as the original histogram. The scale is different—e.g., only 8 people are in the largest break here. But the shape is the same, and the 2007 group might have the same characteristics as the overall group.


hist(employees\$received[employees\$year == 2008],
breaks = 50)

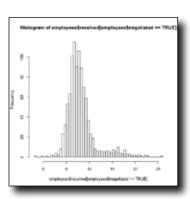
There's the exact same thing going on here as we see with the 2007 data. R even chose to plot the data using the exact same scale. At least as far as this data is concerned, 2007 and 2008 are pretty similar.


hist(employees\$received[employees\$gender == "F"],
 breaks = 50)

Once again, we see the big hump and the little hump attached on the right, although the scale is different on this histogram. This graph shows raises earned by women by all the years represented in the data, so there's a lot of them.

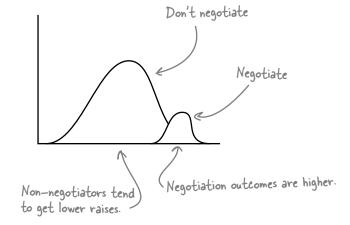

hist(employees\$received[employees\$gender == "M"],
 breaks = 50)

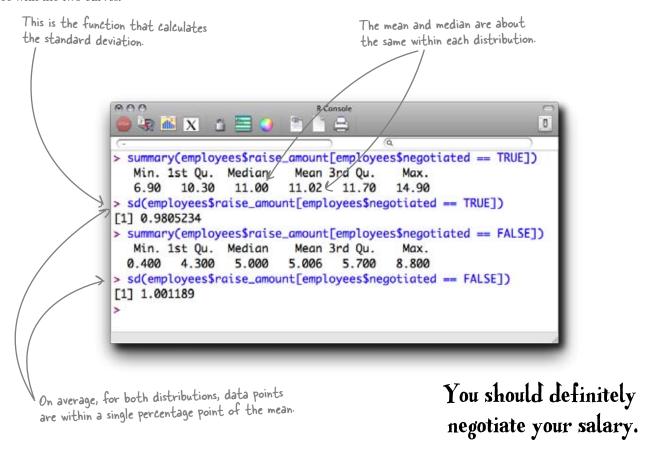
This looks a lot like the histogram for females. The scale is different, but when you count the bars, it looks like there are roughly the same number of men as women in the different categories. As usual, there are two humps.


hist(employees\$received[employees\$negotiated == FALSE],
 breaks = 50)

Now here's something interesting: just one hump. And the horizontal scale shows that these people—the ones who did not negotiate their raises—are on the low end of the raise range. And there are a lot of them, as you can see from the vertical scale.

hist(employees\$received[employees\$negotiated == TRUE],
 breaks = 50)


It looks like splitting those who did and did not negotiate neatly separates the two humps. Here we see people earning a lot more in raises, and there are far fewer people. It looks like negotiating for a raise gives people a completely different outcome distribution.


Negotiation pays

Your analysis of histograms of different subsets of the raise data shows that getting a larger raise is all about *negotiation*.

People have a different **spread of outcomes** depending on their choice of whether to negotiate. If they do, their whole histogram shifts to the right.

If you run the summary statistics on your negotiation subsets, the results are just as dramatic as what you see with the two curves.

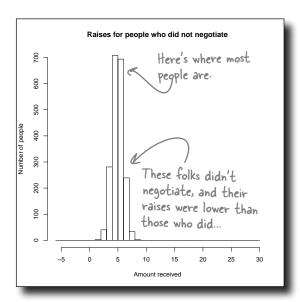
What will negotiation mean for you?

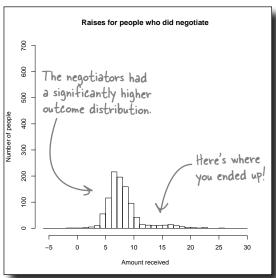
Now that you've analyzed the raise data, it The data suggest that negotiation will tend to create these outcomes. should be pretty clear which strategies will have the best results. These are your strategies. Ask for a little = Raise Does your boss Ask for a lot = your place think you're being reasonable? Is she delighted or disappointed? Incredible raise! _lt's great to do nothing... _if you don't want a big raise!

10 regression

Predict it.

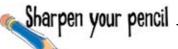
Regression is an incredibly powerful statistical tool that, when used correctly, has the ability to help you predict certain values. When used with a controlled experiment, regression can actually help you predict the future. Businesses use it like crazy to help them build models to explain customer behavior. You're about to see that the judicious use of regression can be very profitable indeed.


What are you going to do with all this money?


Your quest for a raise paid off. With your histograms, you figured out that people who chose to negotiate their salaries got consistently higher outcomes. So when you went into your boss's office, you had the confidence that you were pursuing a strategy that tended to pay off, and it did!

These are the histograms you looked at in the final exercises of the previous chapter, except they've been redrawn to show the same scale and bin size.

Nice work!



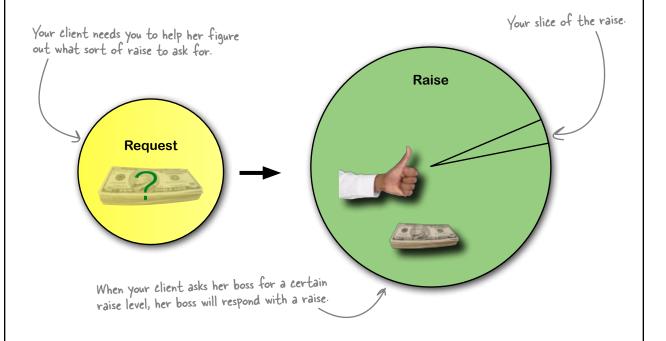
No point in stopping now.

Lots of people could benefit from your insight about how to get better raises. Few of your colleagues took the savvy approach your did, and you have a lot to offer those who didn't.

You should set up a business that specializes in getting people raises!

Here are a few questions to get you thinking about data-based ways of creating a business around your insights in salary negotiations.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	derstand how to negotiate raises?
If you ran such compensate yo	a business, what would be a fair way to ou for your knowledge?
If you ran such compensate yo	a business, what would be a fair way to ou for your knowledge?
If you ran such compensate yo	a business, what would be a fair way to ou for your knowledge?
If you ran such compensate yo	a business, what would be a fair way to ou for your knowledge?
If you ran such compensate yo	a business, what would be a fair way to ou for your knowledge?
If you ran such compensate yo	a business, what would be a fair way to ou for your knowledge?


What sort of data-based compensation consulting business do you envision?

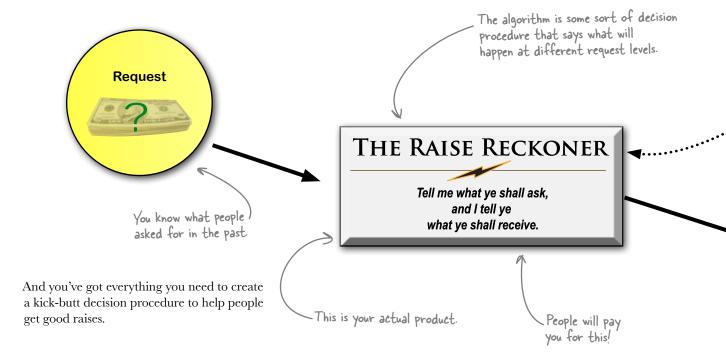
What do you think your clients would want from a business that helps them understand how to negotiate raises?

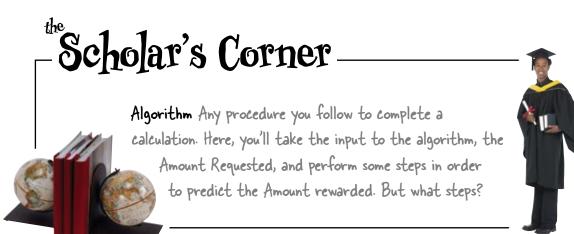
There are all sorts of ways that people negotiating for a raise could be helped: they might want to know how to dress, how to think about the issue from the perspective of their boss, what words will soften people up, and so forth. But one question is fundamental: how much do lask for?

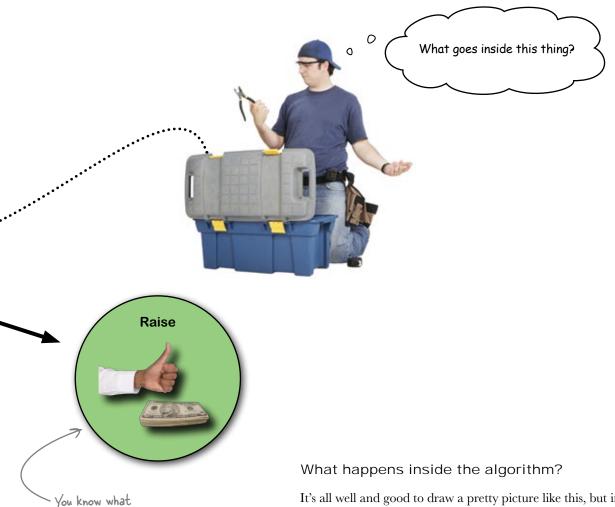
If you ran such a business, what would be a fair way to compensate you for your knowledge?

Clients will want you to have an incentive to make sure that their experience works out well. So why not charge them a percentage of what they actually get when they use your advice? That way, your incentive is to get them the biggest raise you can get them, not to waste their time.

An analysis that tells people what to ask for could be huge

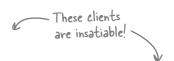

What amount of money is reasonable to ask for? How will a request for a raise translate into an actual raise? Most people just don't know.




Behold... the Raise Reckoner!

People want to know what to ask for. And they want to know what they'll get, given what they've asked for.

You need an algorithm.


people received, too.

It's all well and good to draw a pretty picture like this, but in order for you to have something that people are willing to pay for—and, just as important, in order for you to have something that *works*—you're going to need to do a serious analysis.

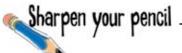
So what do you think goes inside?

Inside the algorithm will be a method to predict raises

Prediction is a big deal for data analysis. Some would argue that, speaking generally, **hypothesis testing** and **prediction** together are the *definition* of data analysis.

BULLET POINTS

Things you might need to predict:

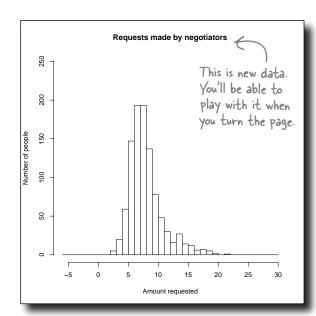

- People's actions
- Market movements
- Important events
- Experimental results
- Stuff that's not in your data

Questions you should always ask:

- Do I have enough data to predict?
- How good is my prediction?
- Is it qualitative or quantitative?
- Is my client using the prediction well?
- What are the limits of my prediction?

Let's take a look at some data

about what negotiators asked for. Can you *predict* what sort of raise you'll get at various levels of requests?

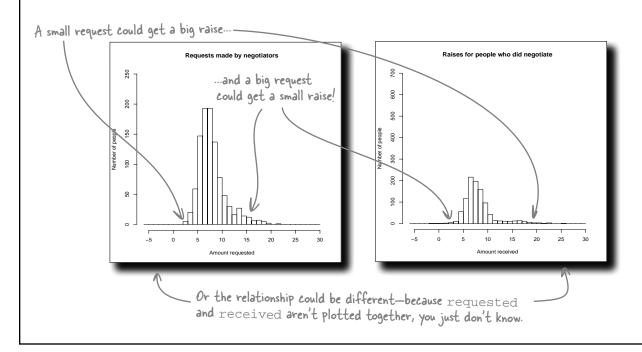

The histograms below describe the amount of money the negotiators received and the amount of money they *requested*.

Do the histograms tell you what people should request in order to get a big raise? Explain how comparing the two histograms might illuminate the relationship between these two variables, so that you might be able to predict how much you would receive for any given request.

Raises for people who did negotiate

This is the chart from the beginning with a different scale.

Amount received


Sharpen your pencil Solution

Can you tell from looking at these two histograms how much someone should request in order to get the biggest raise?

No. The histograms show spreads of single variables, but they don't actually compare them. In order

to know how these two variables relate to each other, we'd have to see where single individuals fall

on both the requested and received distributions.

there are no **Dumb Questions**

Q: Can't I just overlay two histograms onto the same grid?

A: You totally can. But in order to make a good comparison, the two histograms need to describe *the same thing*. You made a bunch of histograms in the previous chapter using subsets of the same data, for example, and comparing those subsets to each other made sense.

But Amount Received and Amount Requested are really similar, aren't they?

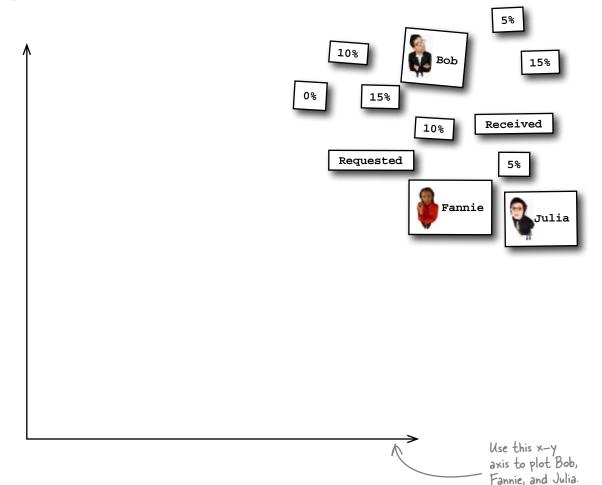
A: Sure, they're similar in the sense that they are measured using the same metric: percentage points of one's salary. But what you want to know is not so much the distribution of either variable but how, for a single person, one variable relates to the other.

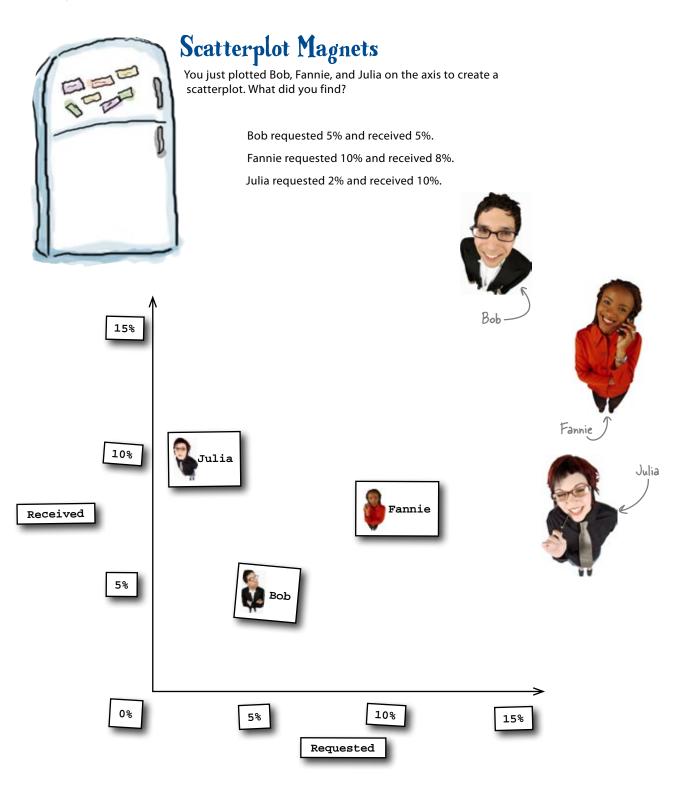
I get it. So once we have that information, how will we make use of it?

Good question. You should stay focused on the end result of your analysis, which is some sort of intellectual "product" that you can sell to your customers. What do you need? What will the product look like? But first, you need a visualization that compares these two variables.

Scatterplot Magnets

Remember scatterplots from chapter 4? They're a great visualization for looking at two variables together. In this exercise, take the data from these three people and use it to place them on the graph.


You'll need to use other magnets to draw your scale and your axis labels.


Bob requested 5% and received 5%.

Fannie requested 10% and received 8%.

Julia requested 2% and received 10%.

there are no **Dumb Questions**

When can I use scatterplots?

A: Try to use them as frequently as you can. They're a quick way to show rich patterns in your data. Any time you have data with observations of two variables, you should think about using a scatterplot.

So any two variables can be put together in a scatterplot?

A: As long as the two variables are in pairs that describe the same underlying thing or person. In this case, each line of our database represents an instance of an employee asking for a raise, and for each employee, we have a received and a requested value.

What should I look for when I see

A: For an analyst, scatterplots are ultimately all about looking for causal relationships between variables. If high requests cause low raises, for example, you'll see an association between the two variables on the scatterplot. The scatterplot by itself only shows association, and to demonstrate causation you'll need more (for starters, you'd need an explanation of why one variable might follow from the other).

Q: What if I want to compare three pieces of data?

A: You can totally create visualizations

in R that make a comparison among more than two variables. For this chapter, we're going to stick with two, but you can plot three variables using 3D scatterplots and multi-panel lattice visualizations. If you'd like a taste of multidimensional scatterplots, copy and run some of the examples of the cloud function that can be found in the help file at help (cloud).

O: So when do we get to look at the 2D scatterplot for the raise data?

A: Right now. Here's some ready bake code that will grab some new, more detailed data for you and give you a handy scatterplot. Go for it!

Run these commands inside of R to generate a **scatterplot** that shows **what people requested** and **what they received**.

Make sure you're connected to the Internet when you run this command, because it pulls data off the Web.

head(employees, n=30)

This command loads some new data and doesn't display any results.

plot(employees\$requested[employees\$negotiated==TRUE],
 employees\$received[employees\$negotiated==TRUE])

This command displays the scatterplot

This command will show you what's in the data... always a good idea to take a look.

What happens when you run these commands?

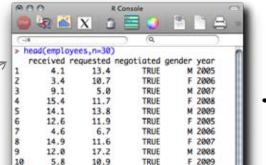
Scatterplots compare two variables

Each one of the points on this **scatterplot** represents a single observation: a single person.

Like histograms, scatterplots are another quick and elegant way to show data, and they show the spread of data. But unlike histograms, scatterplots show *two* variables. Scatterplots show *how* the observations are paired to each other, and a good scatterplot can be part of how you demonstrate **causes**.

This dude asked for 7% but got 20%. He must be important.

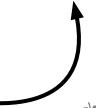
The plot command produced the scatterplot on the right.



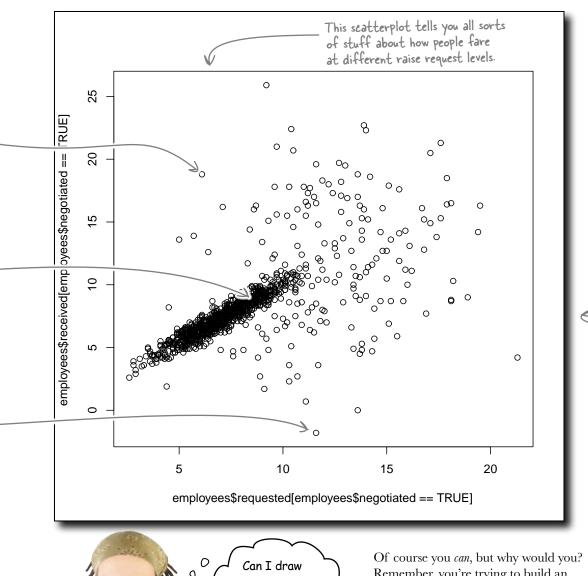
> head(employees, n=30)

plot(employees\$requested[employees\$negotiated==TRUE],
 employees\$received[employees\$negotiated==TRUE])

The head command shows you the data below.

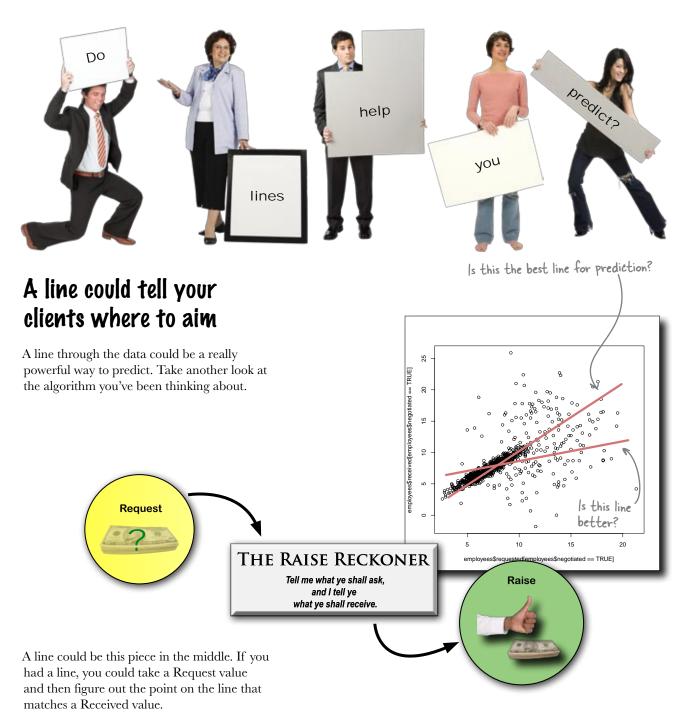

Here's the output of the head command.

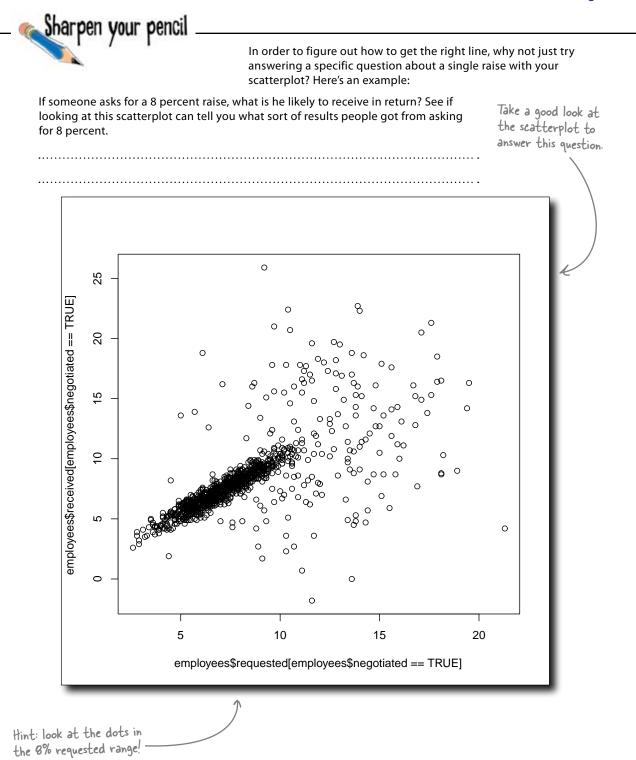
This gentleman asked for 8% and received 8%.



This guy asked for 12% but had a 3% pay cut!

These three People and more are all inside this data set.

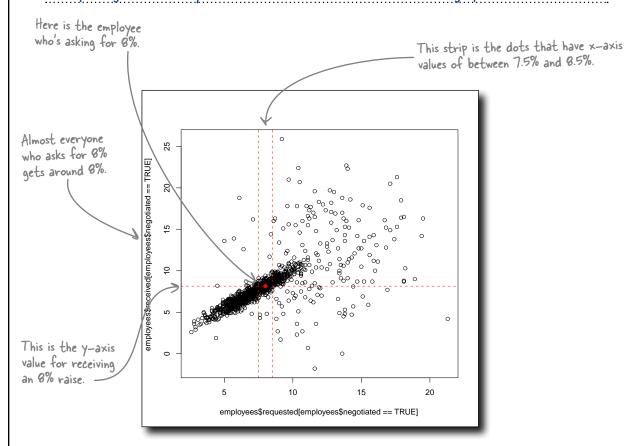

Together, these dots represent all the negotiators in the database.


Remember, you're trying to build an algorithm here.

What would a line through the data do for you?

•••••	 	

If it was the **right** line, you might have your missing piece of the algorithm.



Using the scatterplot, how do you determine what an 8% raise request is likely to get you?

Just take the average amount received for dots around the range of amount requested you're

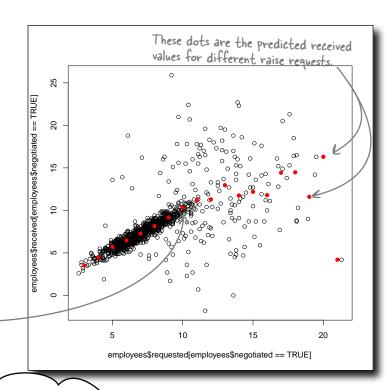
looking at. If you look around 8% on the x-axis (the amount requested), it looks like the

corresponding dots on the y-axis are about 8%, too. Take a look at the graph below.

If you take the **mean** of the Amount Received scores for dots in the 8 percent range (or **strip**), you get around 8 percent. On average, if you ask for 8 percent, you get 8 percent.

So you've solved the raise question for one group of people: those who ask for 8 percent. But other people will ask for different amounts.

What happens if you look at the average amount received for all the x-axis strips?


Predict values in each strip with the graph of averages

The **graph of averages** is a scatterplot that shows the predicted y-axis value for **each strip on the x-axis**. This graph of averages shows us what people get, on average, when they request each different level of raise.

The graph of averages is a lot more powerful than just taking the overall average. The overall average raise amount, as you know, is 4 percent. But this graph shows you a much more subtle representation of how it all shakes out.

Here's the point we created to predict the likely value from an 8% raise request.

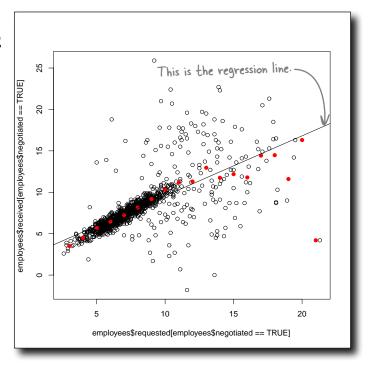
0

Man, I wanted to draw a line through the first scatterplot. I'm **dying** to draw a line through the graph of averages!

You've hit on the right line.

Seriously. Draw a line through the points on the graph of averages.

Because that line is the one you're looking for, the line that you can use to **predict raises for everybody**.


draw them on your graphs.

The regression line predicts what raises people will receive

Here you have it, the fascinating regression line.

The regression line is just the line that best fits the points on the graph of averages. As you're about to see, you don't just have to

You can represent them with a simple equation that will allow you to predict the y variable for any x variable in your range.

Dumb Questions

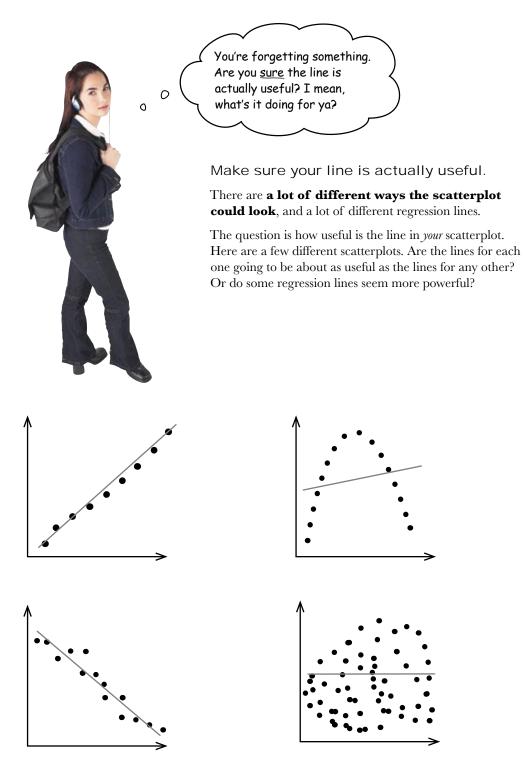
Q: Why is it called a regression?

A: The guy who discovered the method, Sir Francis Galton (1822-1911), was studying how the height of fathers predicted the height of their sons. His data showed that, on average, short fathers had taller sons, and tall fathers had shorter sons. He called this phenomenon "regression to mediocrity."

Sounds kind of snooty and elitist. It seems that the word "regression" has more to do with how Galton felt about numbers on boys and their dads than anything statistical.

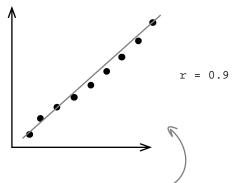
A: That's right. The word "regression" is more a historical artifact than something analytically illuminating.

We've been predicting raise amount from raise request. Can I predict raise request from raise amount? Can I predict the x-axis from the y-axis?

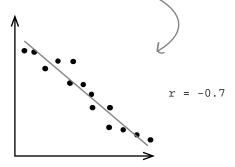

A: Sure, but in that case, you'd be predicting the value of a past event. If someone came to you with a raise she received, you'd predict the raise she had requested. What's important is that you always do a reality check and make sure you keep track of the *meaning* of whatever it is that you're studying. Does the prediction make sense?

Would I use the same line to predict the x-axis from the y-axis?

A: Nope. There are two regression lines, one for x given y and one for y given x. Think about it. There are two different graphs of averages: one for each of the two variables.

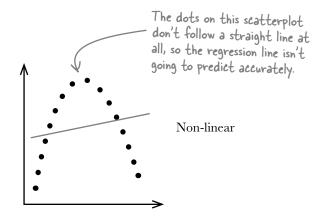

Q: Does the line have to be straight?

A: It doesn't have to be straight, as long as the regression makes sense. Nonlinear regression is a cool field that's a lot more complicated and is beyond the scope of this book.

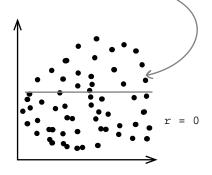


The line is useful if your data shows a linear correlation

A **correlation** is a linear association between two variables, and for an association to be linear, the scatterplot points need to roughly follow a line.



These two scatterplots show tight, strong correlations, and their regression lines will give you good predictions.

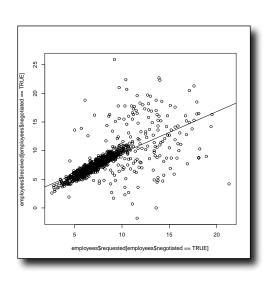


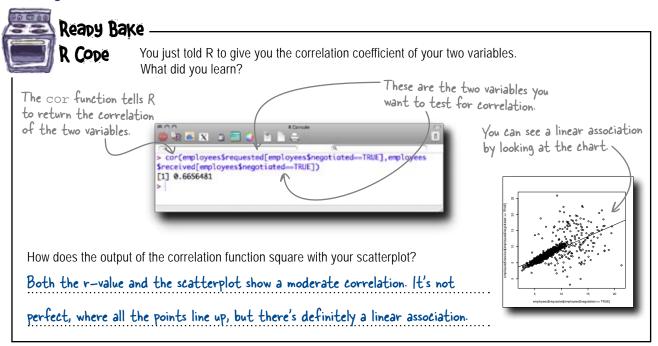
You can have strong or weak correlations, and they're measured by a **correlation coefficient**, which is also known as r (not to be confused with [big] R, the software program). In order for your regression line to be useful, data must show a strong linear correlation.

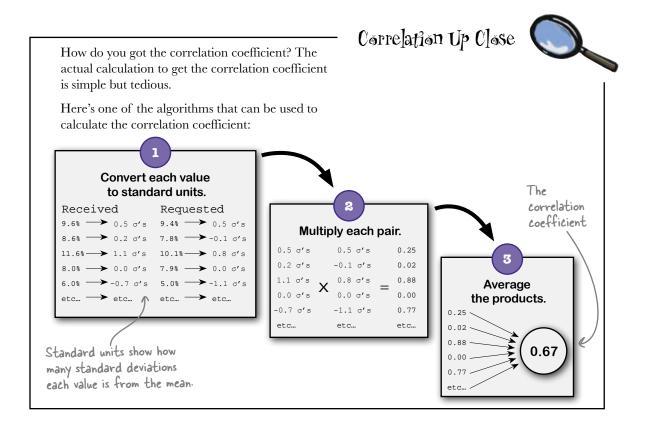
r ranges from -1 to 1, where 0 means *no association* and 1 or -1 means a *perfect* association between the two variables.

These dots are all over the place, so the regression line might not be of much use here either.

Does your raise data show a linear correlation?




Try using R (the program) to calculate ${\bf r}$ (the correlation coefficient) on your data raise. Type and execute this function:


Annotate the elements of the function. What do you think they mean?

How does the output of the correlation function square with your scatterplot? Does the value match what you believe the association between these two variables to be?

.....

there are no **Dumb Questions**

Or -1 is strong enough to enable me to use a regression line. But how low of a correlation is too low?

A: You just need to use your best judgment on the context. When you use the regression line, your judgments should always be qualified by the correlation coefficient.

But how will I know how low of a correlation coefficient is too low?

A: As in all questions in statistics and data analysis, think about whether the regression makes sense. No statistical tool will get you the precisely correct answer all the time, but if you use those tools well, you will know how close they will get you on average. Use

your best judgment to ask, "Is this correlation coefficient large enough to justify decisions I make from the regression line?"

How can I tell for sure whether my distribution is linear?

A: You should know that there are fancy statistical tools you can use to quantify the linearity of your scatterplot. But usually you're safe eyeballing it.

lf I show a linear relationship between two things, am I proving scientifically that relationship?

A: Probably not. You're specifying a relationship in a really useful mathematical sense, but whether that relationship *couldn't be otherwise* is a different matter. Is your data quality really high? Have other people replicated your results over and over again?

Do you have a strong qualitative theory to explain what you're seeing? If these elements are all in place, you can say you've demonstrated something in a rigorous analytic way, but "proof" might be too strong a word.

How many records will fit onto a scatterplot?

A: Like the histogram, a scatterplot is a really high-resolution display. With the right formatting, you can fit thousands and thousands of dots on it. The high-res nature of the scatterplot is one of its virtues.

0

OK, OK, the regression line is useful. But here's a question: how do I use it? I want to calculate specific raises precisely.

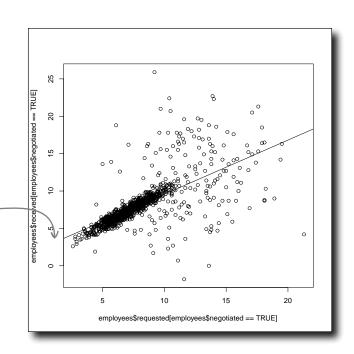
You're going to need a **mathematical function** in order to get your predictions precise...

You need an equation to make your predictions precise

Straight lines can be described algebraically using the **linear equation**.

y is the y-axis value, which in this case in the thing we know: this case in the thing we're trying to predict: raise received. y = a + bxthe raise amount requested.

Your regression line can be represented by this linear equation. If you knew what yours was, you'd be able to plug any raise request you like into the x variable and get a prediction of what raise that request would elicit.

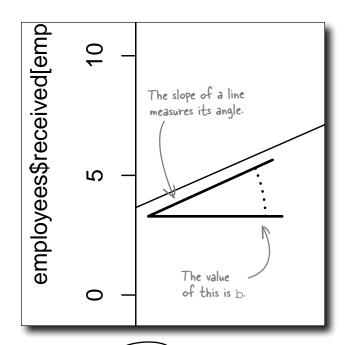

You just need to find the numerical values for a and b, which are values called the **coefficients**.

a represents the y-axis intercept

The first variable of the right side of the linear equation represents the y-axis **intercept**, where your line passes the y-axis.

Here's is the y-axis intercept.

If you happen to have dots on your scatterplot that are around x=0, you can just find the point of averages for that strip. We're not so lucky, so finding the intercept might be a little trickier.


x is the x-axis value, which in

b represents the slope

The **slope** of a line is a measure of its angle. A line with a steep slope will have a large b value, and one with a relatively flat slope will have a b value close to zero. To calculate slope, measure how quickly a line rises (its "rise," or change in y-value) for every unit on the x-axis (its run).

slope =
$$\frac{\text{rise}}{\text{run}}$$
 = b

Once you know the slope and y-axis intercept of a line, you can easily fill those values into your linear equation to get your line.



Tell R to create a regression object

If you give R the variable you want to predict on the basis of another variable, R will generate a regression for you in a snap.

The basic function to use for this is 1m, which stands for **linear model**. When you create a linear model, R creates an **object** in memory that has a long list of properties, and among those properties are your coefficients for the regression equation.

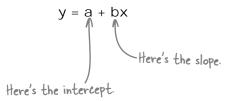
Behind

the Scenes

Here's a list of all the properties R creates inside your linear model.

No software can tell you whether your regression makes sense.

R and your spreadsheet program can generate regressions like nobody's business, but it's up to you to make sure that it makes sense to try to predict one variable from another. It's easy to create useless, meaningless regressions.

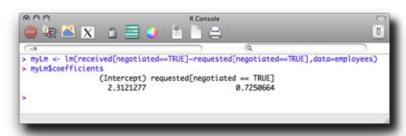

Try creating your linear regression inside of R.

Run the formulas that create a linear model to describe your data and display the coefficients of the regression line.

myLm\$coefficients

Using the numerical coefficients that R finds for you, write the regression equation for your data.

.....



What formula did you create using the coefficients that R calculated?

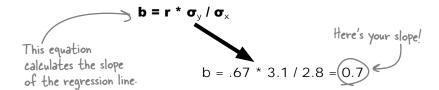
Exercise Socution

Run the formulas that create a linear model to describe your data and display the coefficients of the regression line.

2

Using the coefficients that R found for you, you can write your regression equation like this.

Here's the intercept



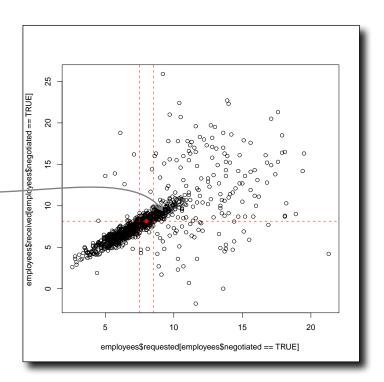
- This is your regression formula!

Geek Bits

How did R calculate the slope? It turns out that the slope of the regression line is equal to the correlation coefficient multiplied by the standard deviation of y divided by the standard deviation of x.

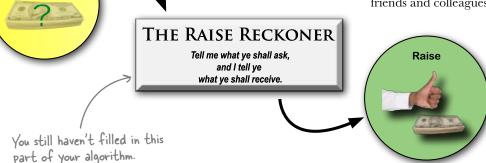
Ugh. Let's just say that calculating the slope of a regression line is one of those tasks that should make us all happy we have computers to do our dirty work. These are pretty elaborate calculations. But what's important to remember is this:

As long as you can see a solid association between your two variables, and as long as your regression *makes sense*, you can trust your software to deal with the coefficients.

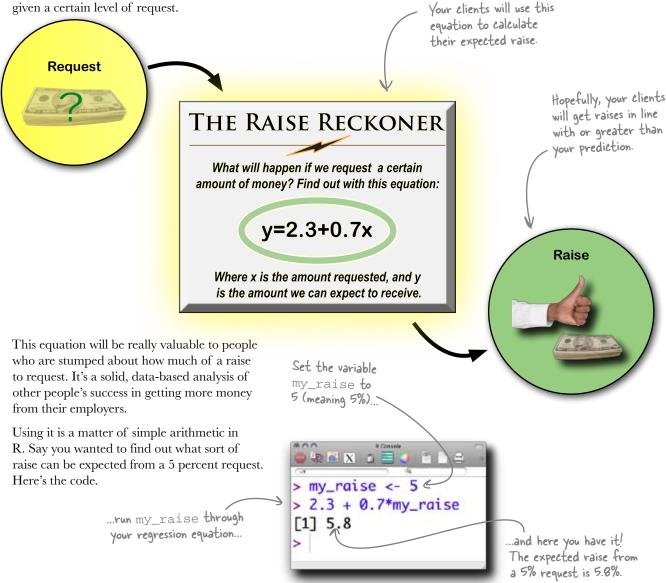

The regression equation goes hand in hand with your scatterplot

Take the example of the person who wanted to know what sort of raise he'd receive if he asked for 8 percent. A few pages back, you made a prediction just by looking at the scatterplot and the vertical strip around 8 percent on the x-axis.

Here's the guy who might ask for 8%.


The regression equation your found with the help of the 1m function gives you the same result.

Request


So what is the Raise Reckoner?

You've done a lot of neat work crafting a regression of the raise data. Does your regression equation help you create a product that will provide crafty compensating consulting for your friends and colleagues?

The regression equation is the Raise Reckoner algorithm

By taking a hard look at how people in the past have fared at different negotiation levels for their salaries, you identified a **regression equation** that can be used to predict raises given a certain level of request.

there are no **Dumb Questions**

How do I know that what people ask for tomorrow will be like they received today?

A: That's one of the big questions in regression analysis. Not only "Will tomorrow be like today?" but "What happens to my business if tomorrow is different?" The answer is that you don't know whether tomorrow will be like today. It always might be different, and sometimes completely different. The likelihood of change and its implications depend on your problem domain.

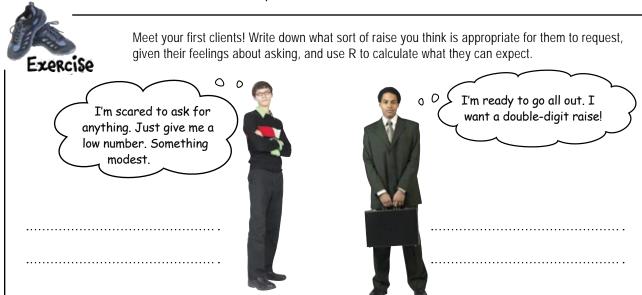
Q: How so?

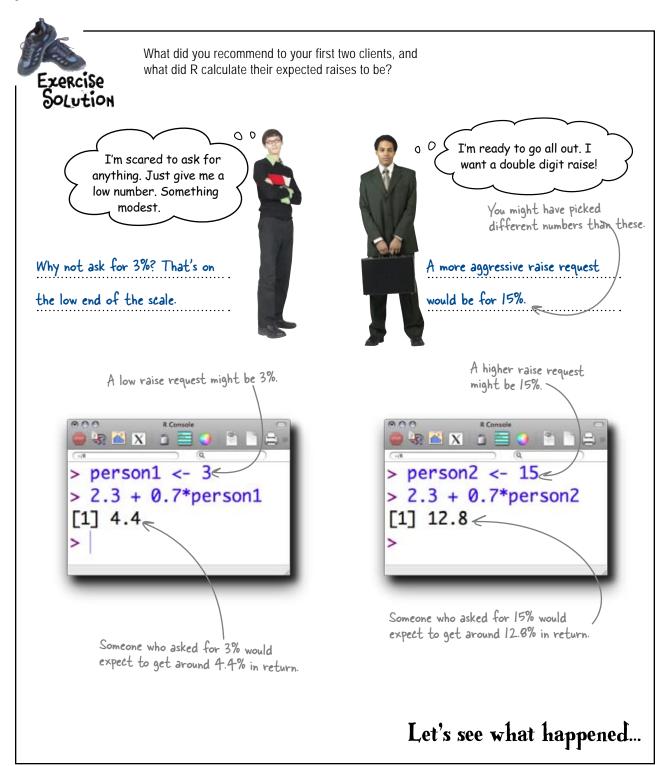
Well, compare medical data versus consumer preferences. How likely is it that the human body, tomorrow, will suddenly change the way it works? It's possible, especially if the environment changes in a big way, but unlikely. How likely is it that consumer preferences will change tomorrow? You can bet that consumer preferences will change, in a big way.

So why bother even trying to predict behavior?

A: In the online world, for example, a good regression analysis can be very profitable for a period of time, even it stops producing good predictions tomorrow. Think about your own behaviors. To an online bookseller, you're just a set of data points.

That's kind of depressing.


Not really—it means the bookseller knows how to get you what you want. You're a set of data points that the bookseller runs a regression on to predict which books you'll want to buy. And that prediction will work until your tastes change. When they do, and you start buying different books, the bookseller will run the regression again to accommodate the new information.

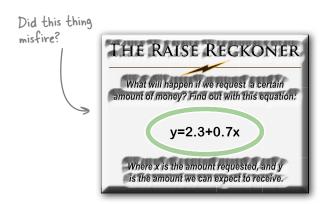

Q: So when the world changes and the regression doesn't work any more, I should update the it?

A: Again, it depends on your problem domain. If you have good qualitative reasons to believe that your regression is accurate, you might never have to change it. But if your data is constantly changing, you should be running regressions constantly and using them in a way that enables you to benefit if the regressions are correct but that doesn't destroy your business if reality changes and the regressions fail.

Shouldn't people ask for the raise they think they *deserve* rather than the raise they see other people getting?

A: That's an excellent question. The question is really part of your mental model, and statistics won't tell you whether what you're doing is the right or fair approach. That's a qualitative question that you, the analyst, need to use your best judgment in evaluating. (But the short answer is: you deserve a big raise!)

Your raise predictor didn't work out as planned...

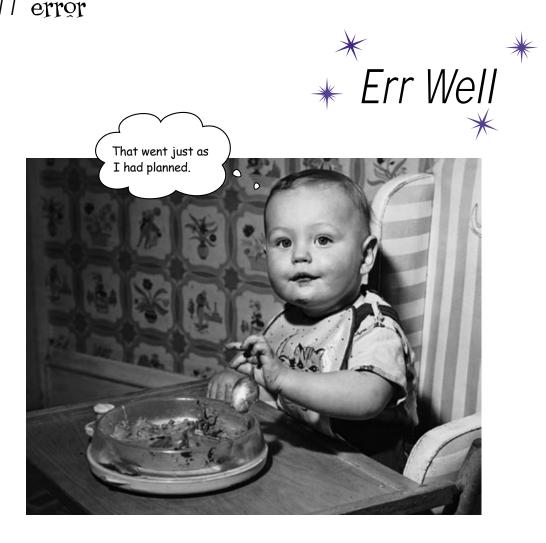

People were falling all over themselves to get your advice, and you got off your first round of recommendations smoothly.

But then the **phone started ringing**. Some of your clients were pleased as punch about the results, but others were not so happy!

I got 5%! I'm definitely satisfied. Good for you. The check's in the mail!

Looks like this one did just fine!

This guy's request didn't pan out so well for him.



What did your clients **do** with your advice? What went wrong for those who came back unhappy?

You'll have to get to the bottom of this situation in the **next chapter**...

11 error

The world is messy.

So it should be no surprise that your predictions rarely hit the target squarely. But if you offer a prediction with an error range, you and your clients will know not only the average predicted value, but also how far you expect typical deviations from that error to be. Every time you express error, you offer a much richer perspective on your predictions and beliefs. And with the tools in this chapter, you'll also learn about how to get error under control, getting it as low as possible to increase confidence.

Your clients are pretty ticked off

In the previous chapter, you created a linear regression to predict what sort of raises people could expect depending on what they requested.

Lots of customers are using the raise algorithm. Let's see what they have to say.

I can't believe it! I got a 5.0% bigger raise than the algorithm predicted! My negotiation must have scared my boss, and he just started throwing money at me!

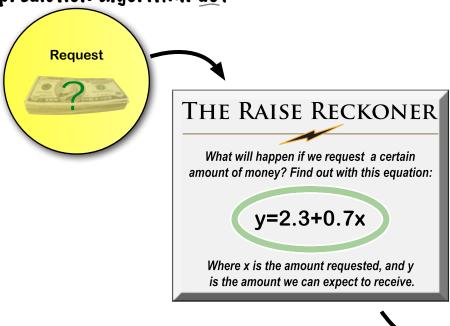
0

I got a 4.5% raise. It was a good raise. I think that's the sort of raise I deserved. I was so nervous in the meeting that I can't even remember what I asked for.

Yeah, I got no raise. Did you hear that? 0.0% I have some ideas for you about what you can do with your algorithm.

0

I'm pretty pleased. My raise was 0.5% lower than expected, but it's still a solid raise. I'm pretty sure I wouldn't have gotten it if I hadn't negotiated.



Bull's-eye! I got the exact raise the algorithm predicted. I'm telling you, it's incredible. You must be some sort of genius. You rock my world.

What did your raise prediction algorithm do?

Everyone used the same formula, which was based on solid empirical data.

But it looks like people had a bunch of different experiences.

What happened?

The statements on the facing page are qualitative data about the effectiveness of your regression.	
How would you categorize the statements?	

Sharpen your pencil Solution

You looked closely at your customers' qualitative responses to your raise prediction algorithm. What did you find?

The statements.

Bull's-eye! I got the exact raise the algorithm predicted. I'm telling you, it's incredible. You must be some sort of genius. You rock my world.

This one's spot on!

I'm pretty pleased. My raise was 0.3% lower than expected, but it's still a solid raise. I'm pretty sure I wouldn't have gotten it if I hadn't negotiated.

This one got a raise that was close but not exactly what you predicted.

Yeah, I got no raise. Did you hear that? 0.0% I have some ideas for you about what you can do with your algorithm.

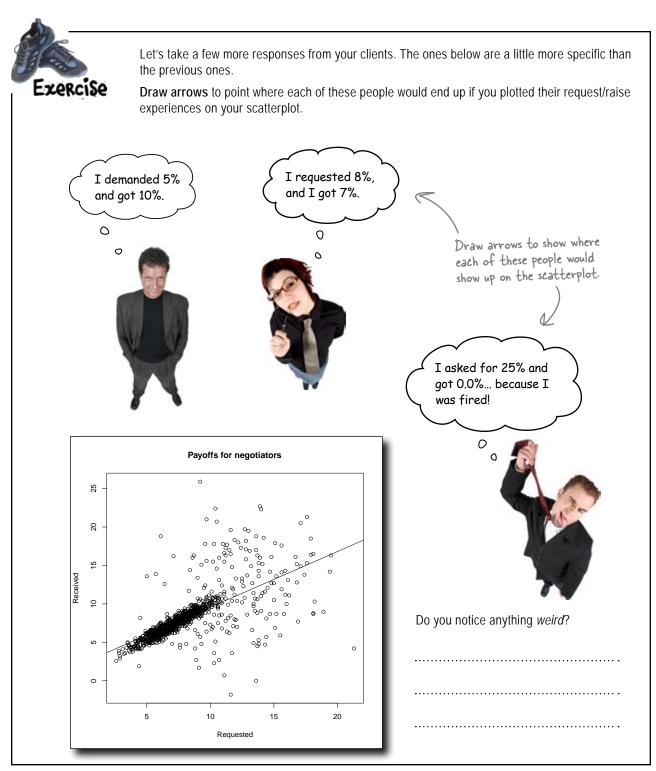
I can't believe it! I got a 5.0% bigger raise than the algorithm predicted! My negotiation must have scared my boss, and he just started throwing money at me!

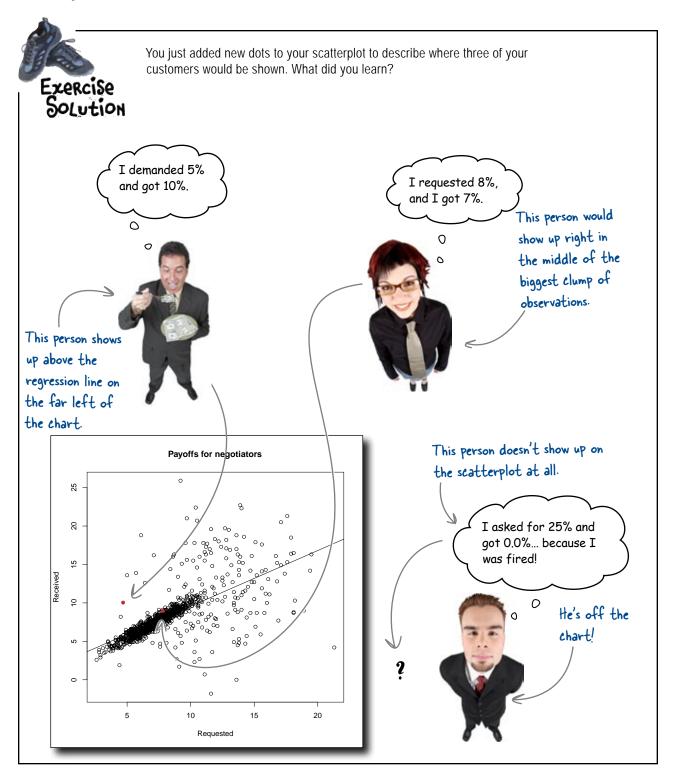
It looks like there are basically three types of response, qualitatively speaking. One of them got exactly what the algorithm predicted. Another received a raise that was a little off, but still close to the prediction. Two of them got raises that were way off. And the last one, well, unless there's a trend of people who can't remember what they requested there's probably not much you can make of it.

This one's just weird. It's kind of hard to draw any conclusion off a statement like this.

I got a 4.5% raise. It was a good raise. I think that's the sort of raise I deserved.

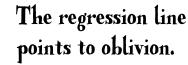
I was so nervous in the meeting that I can't even remembered what I asked for.

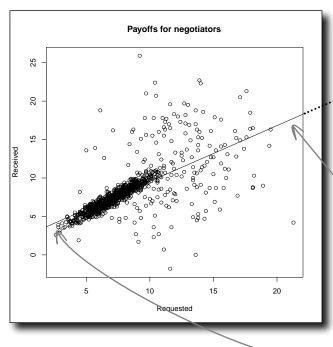

These two appear to be way off.


The segments of customers

Remember, the regression equation predicts what people will hit **on average**. Obviously, not everyone is going to be exactly at the average.

Your responses





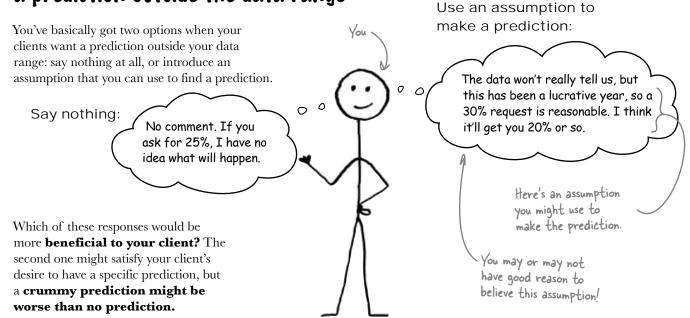
The guy who asked for 25% went outside the model

Using a regression equation to predict a value outside your range of data is called **extrapolation**. Beware extrapolation!

You don't know what's going on out here. Maybe if you had more data, you could use your equation to predict what a bigger request would get.

But you'd definitely have to run your regression again on the new data to make sure you're using the right line.

Extrapolation is different from **interpolation**, where you are predicting points within your range of data, which is what regression is designed to do. Interpolation is fine, but you should be leery of extrapolation.


People extrapolate all the time. But if you're going to do it, you need to **specify additional assumptions** that make explicit your ignorance about what happens outside the data range.

Interpolating is just making a prediction within these bounds.

What would you say to a client who is wondering what he should expect if he requested a 30% raise?

How to handle the client who wants a prediction outside the data range

O: So what exactly might happen outside the data range that's such a problem?

A: There might not even be data outside the range you're using. And if there is, the data could look totally different. It might even be nonlinear.

Q: I won't necessarily have all the points within my data range, though.

A: You're right, and that's a data quality and sampling issue. If you don't have all the

there are no **Dumb Questions**

data points—if you're using a sample—you want to make sure that the sample is representative of the overall data set and is therefore something you can build a model around.

Isn't there something to be said for thinking about what would happen under different hypothetical, purely speculative situations?

Yes, and you should definitely do it.
But it takes discipline to make sure your ideas about hypothetical worlds don't spill over into your ideas (and actions) regarding the real world. People abuse extrapolation.

lsn't any sort of prediction about the *future* a type of extrapolation?

A: Yes, but whether that's a problem depends on what you're studying. Is what you're looking at the sort of thing that could totally change its behavior in the future, or is it something that is pretty stable? The physical laws of the universe probably aren't going to change much next week, but the associations that apparently explain the stock market might. These considerations should help you know how to use your model.

Always keep an eye on your model assumptions.

And when you're looking at anyone else's models, always think about how reasonable their assumptions are and whether they might

have forgotten to mention any. Bad assumptions can make your model completely useless at best and dangerously deceptive at worst.

BE the model
Look at this list of possible assumptions for the Raise Reckoner. How might each of these change your model, if it were true?

data range, but this year we made a lot less money.
One boss administered all the raises in the company for the data we have, but he's left the company and been replaced by another boss.
How you ask makes a big difference in what kind of raise you get.
The spread of dots in the 20-50 percent range looks just like the spread of dots in the 10-20 percent range.
Only tall people ask for raises.

Economic performance has been about the same for all years in the

BE the model

Look at this list of possible assumptions for the Raise Reckoner. How might each of these change your model, if it were true?

> Eco data

Economic performance has been about the same for all years in the data range, but this year we made a lot less money.

This year's raises could be down, on average. The model might not work.

One boss administered all the raises in the company for the data we have, but he's left the company and been replaced by another boss.

The new guy might think differently and break the model.

How you ask makes a big difference in what kind of raise you get.

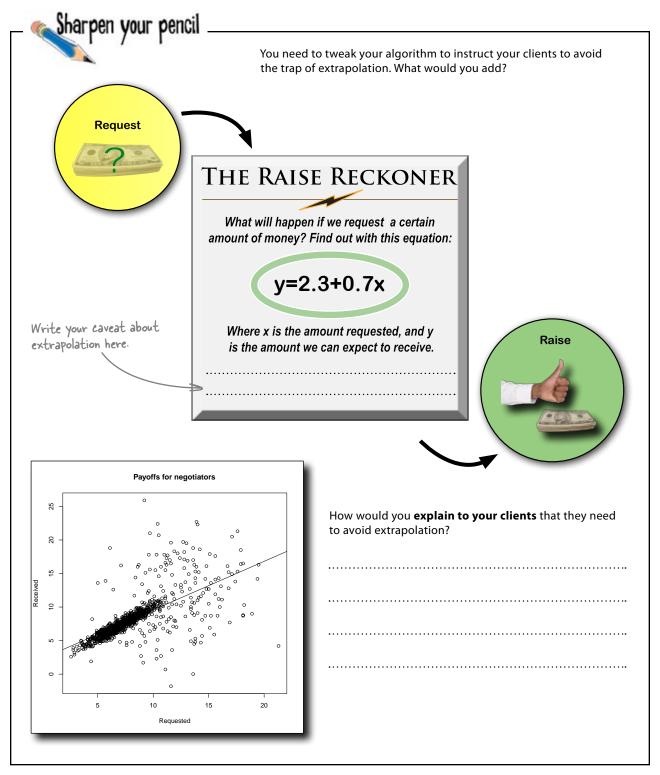
This is surely true, and the data reflects the variation, so the model's OK.

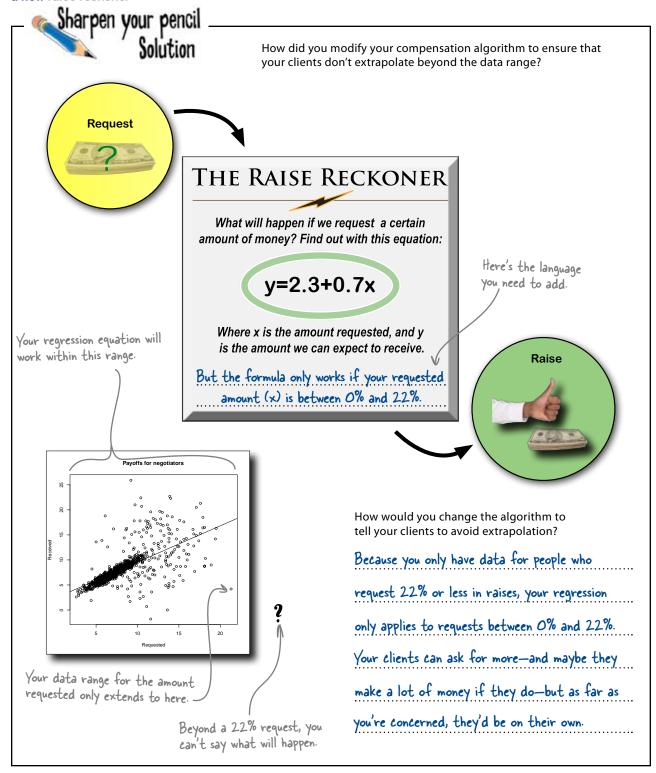
You don't have data on how to ask for money... the model spread of dots in the 10-20 percent range.

If this were true, you'd be able to extrapolate the regression equation.

Only tall people have asked for raises in the past.

If this were true, the model wouldn't apply to shorter people.


to ask for money... the model just says what you'll get on average at different requests.


Yikes! That'd be the end of your business, at least until you

have data on the new guy!

Shorter people might do better or worse _ than taller people.

Now that you've thought through how your assumptions affect your model, you need to change your algorithm so that people know how to deal with extrapolation.

The guy who got fired because of extrapolation has cooled off

Well, at least you're fixing your analysis as you go along. That's integrity. I'll still hit you up for advice next time I'm up for a raise.

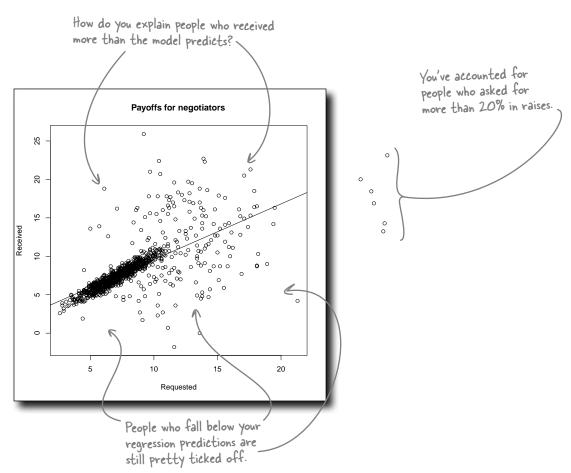
With your new-and-improved regression formula, fewer clients will run with it into the **land of statistical unknowns**.

So does that mean you're finished?

You've only solved part of the problem

There are still lots of people who got screwy outcomes, even though they requested raise amounts that were inside your data range.

What will you do about those folks?

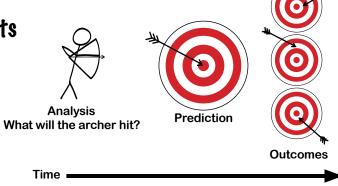


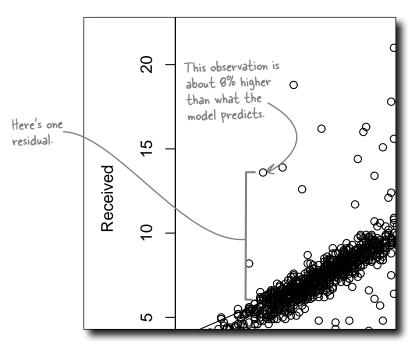
She asked for a common amount and got just a little bit less than she requested.

What does the data for the screwy outcomes look like?

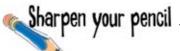
Take another look at your visualization and regression line. Why don't people just get what they ask for?

What could be causing these deviations from your prediction?

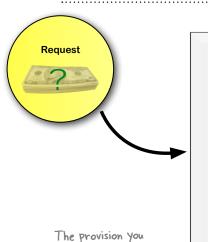

Chance errors are deviations from what your model predicts


You're always going to be making predictions of one sort or another, whether you do a full-blown regression or not. Those predictions are rarely going to be *exactly* correct, and the amount by which the outcomes deviate from your prediction is called **chance error**.

In statistics, chance errors are also called **residuals**, and the analysis of residuals is at the heart of good statistical modeling.


While you might never have a good explanation for why individuals residuals deviate from the model, you should always look carefully at the residuals on scatterplots.

If you interpret residuals correctly, you'll better understand your data and the use of your model.

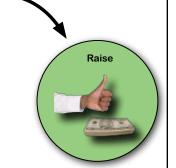

You'll always have chance errors in your predictions, and you might never learn why they're in your data.

Better refine your algorithm some more: this time, you should probably say something about error.

Here are some possible provisions to your algorithm about chance error. Which one would you add to the algorithm?

"You probably won't get what the model predicts because of chance error."	"Your results may vary by a margin of 20 percent more or less than your predicted outcome."
"Only actual results that fit the model results are guaranteed."	"Please note that your own results may vary from the prediction because of chance error."

prefer will go here.


THE RAISE RECKONER

What will happen if we request a certain amount of money? Find out with this equation:

y=2.3+0.7x

Where x is the amount requested, and y is the amount we can expect to receive.

But the formula only works if your requested amount (x) is between 0% and 22%.

You refined the algorithm to incorporate chance errors. What does it say now?

"You probably won't get what the model predicts because of chance error."

This is true. Probably only a few people will get exactly what the equation returns. But it won't be a very satisfying explanation for the client.

"Only actual results that fit the model results are guaranteed."

This is just important—sounding nonsense.

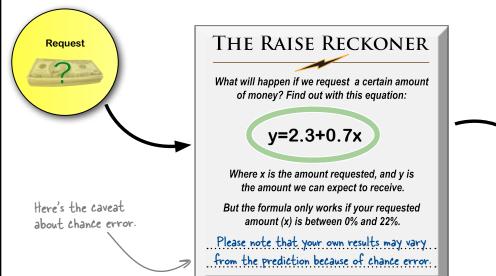
Your results are only guaranteed if they

fit the model prediction? Well what if

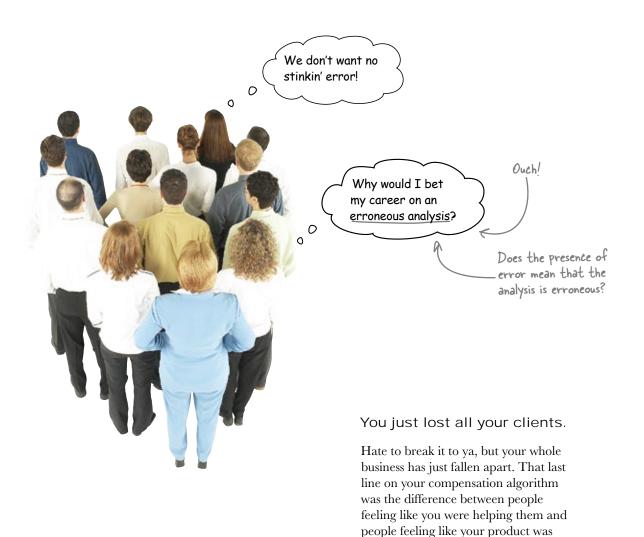
they don't? That's just silly.

"Your results may vary by a margin of 20 percent more or less than your predicted outcome."

It's good to specify error quantitatively.

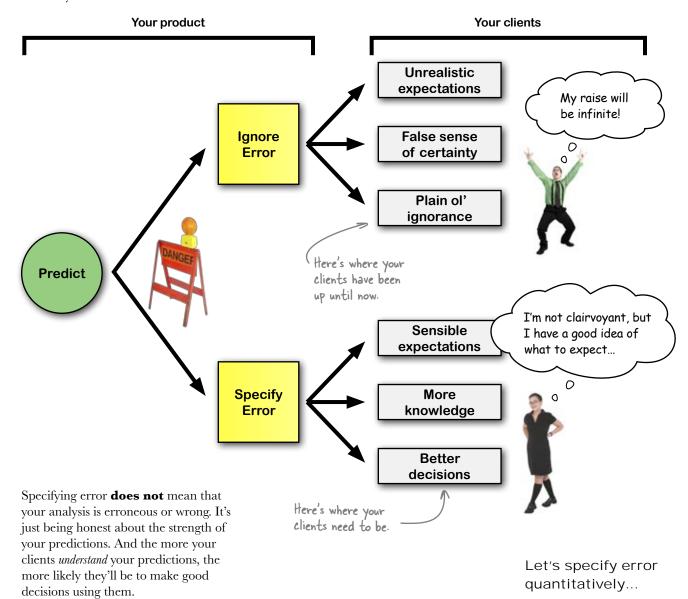

But what reason do you have to believe
the 20% figure? And if it's true,

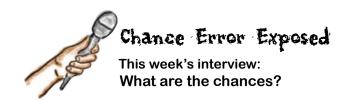
wouldn't you want less error than that?


"Please note that your own results may vary from the prediction because of chance error."

True, not terribly satisfying. Until we have some more powerful tools, this statement

will have to do.




How are you going to fix your product?

worthless.

Error is good for you and your client

The more forthcoming you are about the chance error that your clients should expect in your predictions, the better off both of you will be.

Head First: Man, you're a pain in the butt.

Chance Error: Excuse me?

Head First: It's just that, because of you, regression will never really be able to make good predictions.

Chance Error: *What?* I'm an indispensable part of regression in particular and any sort of measurement generally.

Head First: Well, how can anyone trust a regression prediction as long as you're a possibility? If our clients want to know how much money they'll get when they request a raise, they don't want to hear from us that it's always possible (or even likely!) that what they get will be different from what the model predicts.

Chance Error: You've got me all wrong. Think of me as someone who's always there but who isn't so scary if you just know how to talk about me.

Head First: So "error" isn't necessarily a bad word.

Chance Error: Not at all! There are so many contexts where error specification is useful. In fact, the world would be a better place if people did a better job expressing error often.

Head First: OK, so here's what I'm saying to clients right now. Say someone wants to know what they'll get if they ask for 7 percent in a raise. I say, "The model predicts 7 percent, but chance error means that you probably will get something different from it."

Chance Error: How about you say it like this. If you ask for 7 percent, you'll *probably* get between 6 percent and 8 percent. Doesn't that sound better?

Head First: That doesn't sound so scary at all! Is it really that simple?

Chance Error: Yes! Well, sort of. In fact, getting

control of error is a really big deal, and there's a huge range of statistical tools you can use to analyze and describe error. But the most important thing for you to know is that specifying a **range** for your prediction is a heck of a lot more useful (and *truthful*) than just specifying a single number.

Head First: Can I use error ranges to describe subjective probabilities?

Chance Error: You can, and you really, really should. To take another example, which of these guys is the more thoughtful analyst: one who says he believes a stock price will go up 10 percent next year, or one who says he thinks it'll go up between 0–20 percent next year?

Head First: That's a no-brainer. The first guy can't seriously mean he thinks a stock will go up *exactly* 10 percent. The other guy is more reasonable.

Chance Error: You got it.

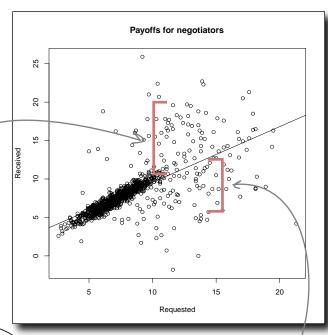
Head First: Say, where did you say you came from?

Chance Error: OK, the news might not be so good here. A lot of times you'll have no idea where chance error comes from, especially for a single observation.

Head First: Seriously, you mean it's impossible to explain why observations deviate from model predictions?

Chance Error: Sometimes you can explain some of the deviation. For example, you might be able to group some data points together and reduce the chance error. But I'll always be there on some level.

Head First: So should it be my job to reduce you as much as possible?


Chance Error: It should be your job to make your models and analyses have as much explanatory and predictive power as you can get. And that means accounting for me intelligently, not getting rid of me.

Specify error quantitatively

It's a happy coincidence if your observed outcome is exactly what your predicted outcome is, but the real question is what is the spread of the chance error (the **residual distribution**).

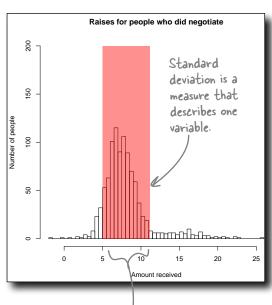
What you need is a statistic that shows how far typical points or observations are, *on average*, from your regression line.

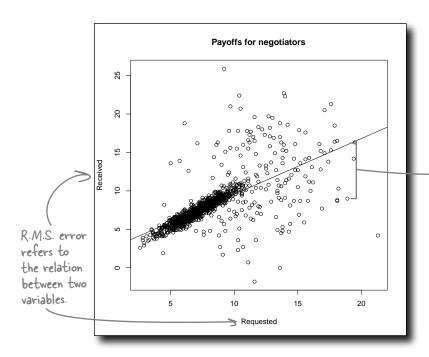
The spread or distribution of residuals around the regression line says a lot about your model.

Hey, that sounds like the standard deviation. The standard deviation describes how far typical points are from the mean observation.

The tighter your observations are around your regression line, the more powerful your line will be.

0


Definitely. The distribution of chance error, or R.M.S. error, around a regression line is a metric you can use just like the standard deviation around a mean.


If you have the value of the R.M.S. error for your regression line, you'll be able to use it to explain to your clients **how far away from the prediction typical outcomes will be**.

Quantify your residual distribution with Root Mean Squared error

Remember the units that you use for standard deviation? They're the same as whatever's being measured: if your standard deviation of raises received is 5 percent, then typical observations will be 5 percent away from the mean.

It's the same deal with R.M.S. error. If, say, your R.M.S. error for predicting Received from Requested is 5 percent, then the typical observation will be 5 percent away from whatever value the regression equation predicts.

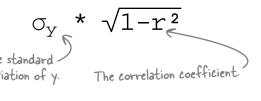
The standard deviation describes the spread around the mean.

The R.M.S. error describes the spread from the regression line.

So how do you calculate the R.M.S. error?

Your model in R already knows the R.M.S. error

The linear model object your created inside of R in the last chapter doesn't just know the y-axis intercept and slope of your regression line.


It has a handle on all sorts of statistics pertaining to your model, including the R.M.S. error. If you don't still have the myLm object you created in R, type in this function before the next exercise:

most current data loaded employees <- read.csv("http://www.headfirstlabs.com/books/hfda/

hfda_ch10_employees.csv", header=TRUE) myLm <- lm(received[negotiated==TRUE]~ requested[negotiated==TRUE], data=employees)

Under the hood, R is using this formula to calculate the R.M.S. error:

Make sure you have the

there are no Dumb Questions

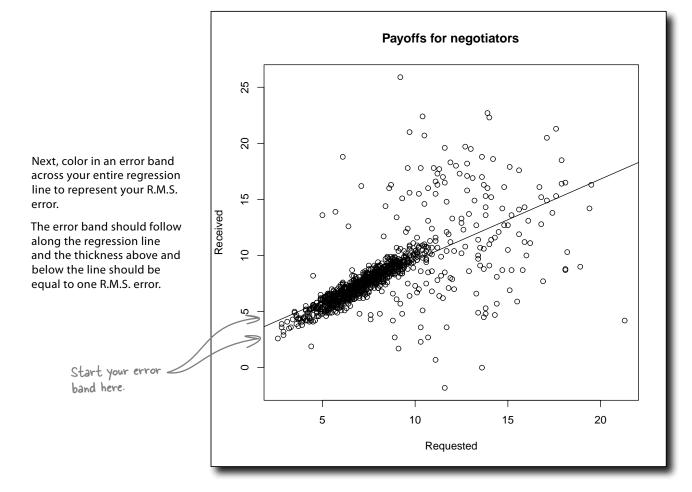
Do I need to memorize that formula?

A: As you'll see in just a second, it's pretty easy to calculate the R.M.S. error inside of R or any other statistical software package. What's most important for you to know is that error can be described and used quantitatively, and that you should always be able to describe the error of your predictions.

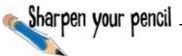
Oo all types of regression use this same formula to

 $A\colon$ If you get into nonlinear or multiple regression, you'll use different formulas to specify error. In fact, even within linear regression there are more ways of describing variation than R.M.S. error. There are all sorts of statistical tools available to measure error, depending on what you need to know specifically.

Instead of filling in the algebraic equation to get the R.M.S. error, let's have R do it for us.

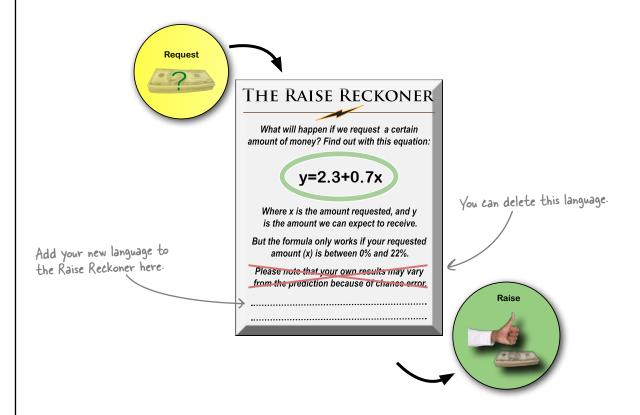

Take a look at R's summary of your model by entering this command:

summary(myLm)

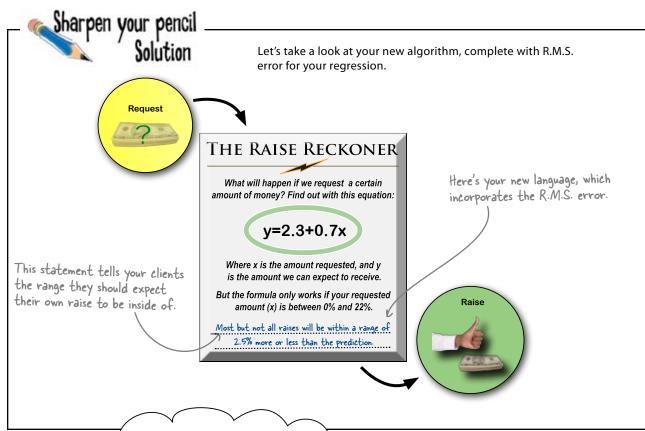

Your R.M.S. error will be in the output, but you can also type this to see the error:

summary(myLm)\$sigma

The R.M.S. error is also called "sigma" or "residual standard error."



R's summary of your linear model shows your R.M.S. error myLm When you ask R to summarize your Here's a summary linear model object, it gives you a of your model bunch of information about what's Linear model object inside the object. > summary(myLm) Call: lm(formula = received[negotiated == TRUE] ~ requested[negotiated == TRUE], data - employees) These are the slope R has all sorts of things to tell Residucts: and intercept of Median 30 you about your linear model. 13,5560 -0.0601 0.3879 16.9173 your regression line. Coefficients: 0.21775 requested[negotiated -- TRUE Not only do you see your regression coefficients, like you saw in the previous chapter, but you also see the Residual standard error: 2.298 on 998 degrees of freedom Multiple R-squared: 0.4430, Adjusted R-squared: 0.4425 F-statistic: 794 on 1 and 998 DF, p-value: < 2.2e-16 R.M.S. error and a bunch of other statistics to describe the model. And here's your R.M.S. error! Payoffs for negotiators 25 If you draw a band that's about 2.3 percentage 20 points above and below your regression line, you get a spread that looks like this. 15 9 10 15 20 Requested


You're ready to have another go at your compensation algorithm. Can you incorporate a more nuanced conception of chance error?

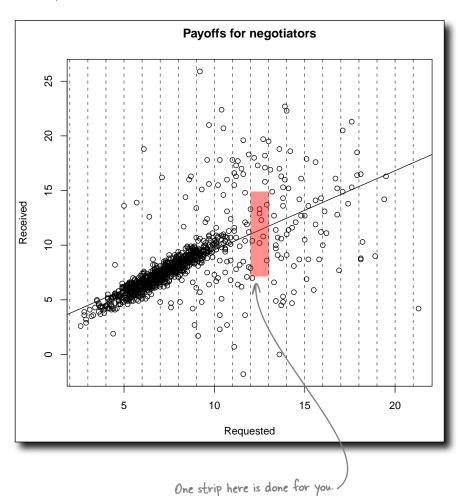
How would you change this algorithm to incorporate your R.M.S. error? Write your answer inside the Raise Reckoner.

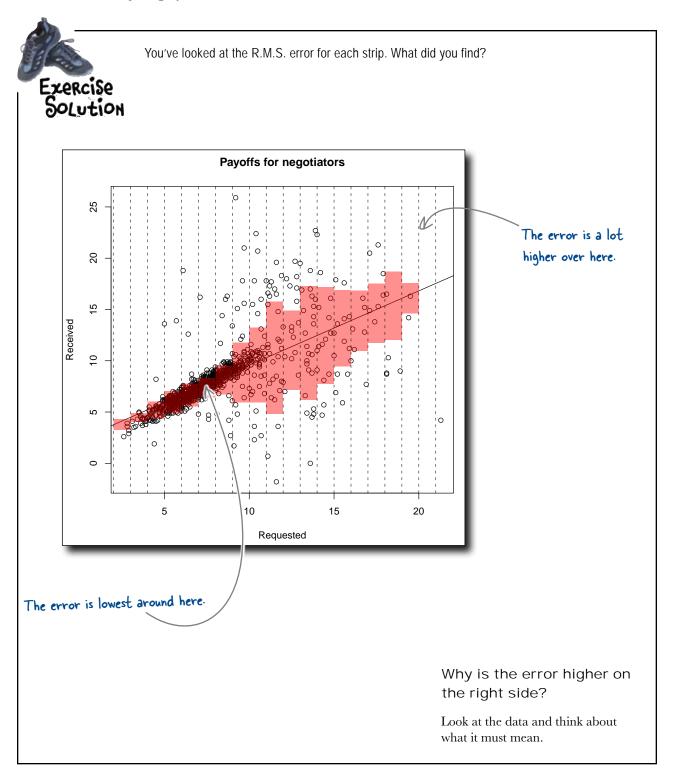
Signif. codes: 0 '***' 0.001

Residual standard error: 2.298 Multiple R-squared: 0.4431, Ad Use the R.M.S. error to improve your algorithm.

So if I ask for 7%, I'll get 4.5—9.5% back? I just need more than that if you want me to take you seriously. Can you give me a prediction with a lower amount of error, please?

She has a point.


Is there anything you can do to make this regression more useful? Can you look at your data in a way that reduces the error?



Look at different strips on your scatterplot. Is the R.M.S. error different at the various strips along the regression line?

For each strip on the scatterplot, color in what you think the error is within that strip.

Do you see **segments** where the residuals are fundamentally different?

Jim: Oh man, that's nuts! It looks like there's a different spread of predictions for every strip along the scatterplot!

Joe: Yeah, that's crazy. Seriously. How in the world do we explain that to our customers?

Jim: They'll never buy it. If we say to them, your error is looking relatively low at 7–8 percent, but at 10–11 percent the error is through the roof, they just won't get it.

Frank: Hey, relax you guys. Maybe we should ask *why* the error bands look the way they do. It might help us understand what's happening with all these raises.

Jim: [Scoff] There you go being all circumspect again.

Frank: Well, we're analysts, right?

Joe: Fine. Let's look at what people are asking for. At the start of the scale, there's kind of a big spread that narrows as soon as we hit 5 percent or so.

Jim: Yeah, and there are only 3 people who asked for less than 5 percent, so maybe we shouldn't put too much stock in that error from 4–5 percent.

Frank: Excellent! So now we're looking at the range from 5 percent all the way up to about 10 percent. The error is lowest there.

Joe: Well, people are being conservative about what they're asking for. And their bosses are reacting, well, conservatively.

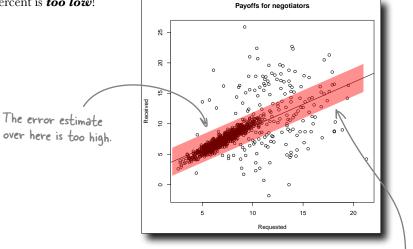
Frank: But then you get over 10 percent...

Jim: And who knows what'll happen to you. Think about it. 15 percent is a big raise. I wouldn't have the guts to request that. Who knows what my boss would do?

Frank: Interesting hypothesis. Your boss might reward you for being so bold, or she might kick your butt for being so audacious.

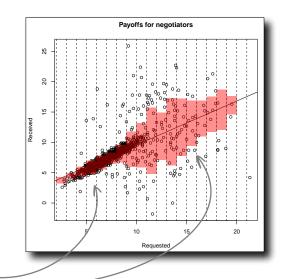
Jim: Once you start asking for a *lot* of money, anything can happen.

Joe: You know, guys, I think we've got two different groups of people in this data. In fact, I think we may even have two different **models**.

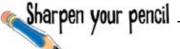


What would your analysis look like if you split your data?

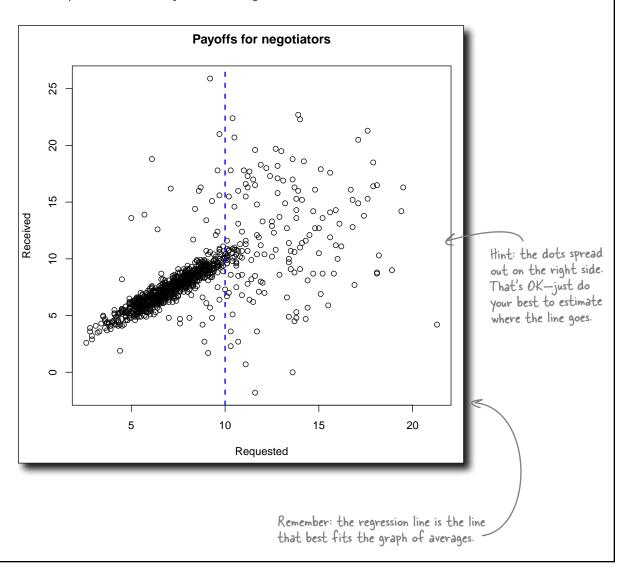
Segmentation is all about managing error

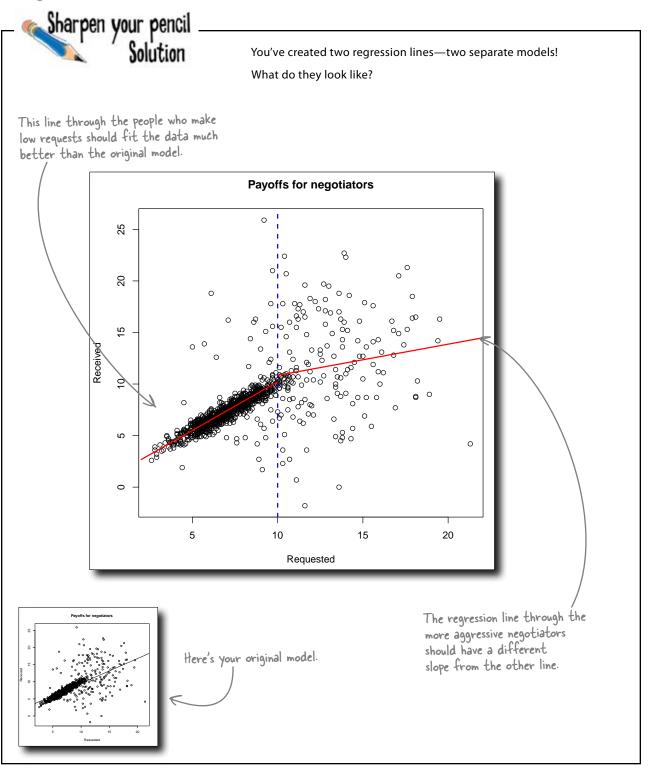

Splitting data into groups is called **segmentation**, and you do it when having multiple predictive models for subgroups will result in less error over all than one model.

On a single model, the error estimate for people who ask for 10 percent or less is **too high**, and the error estimate for people who ask for more than 10 percent is **too low**!


When we looked at the strips, we saw that the error in the two regions is quite different. In fact, segmenting the data into two groups, giving each a model, would provide a more realistic explanation of what's going on.

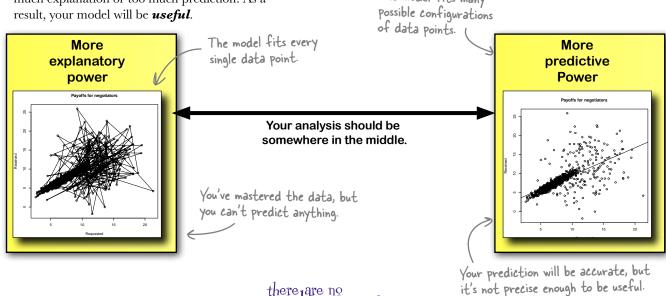
Segmenting your data into two groups will help you **manage error** by providing more sensible statistics to describe what happens in each region.


This error estimate is too low.


These error estimates are more realistic.

If you segment your data between people who requested less than 10 percent and people who requested more than 10 percent, chances are, your regression lines will look different.

Here's the split data. Draw what you think the regression lines are for these two sets of data.



Good regressions balance explanation and prediction

Two segments in your raise regression will let you fit the data without going to the extreme of too much explanation or too much prediction. As a result, your model will be *useful*.

The model fits many

Why would I stop at splitting the data into 2 groups? Why not split them into 5 groups?

A: If you've got a good *reason* to do it, then go right ahead.

I could go nuts and split the data into 3,000 groups. That's as many "segments" as there are data points.

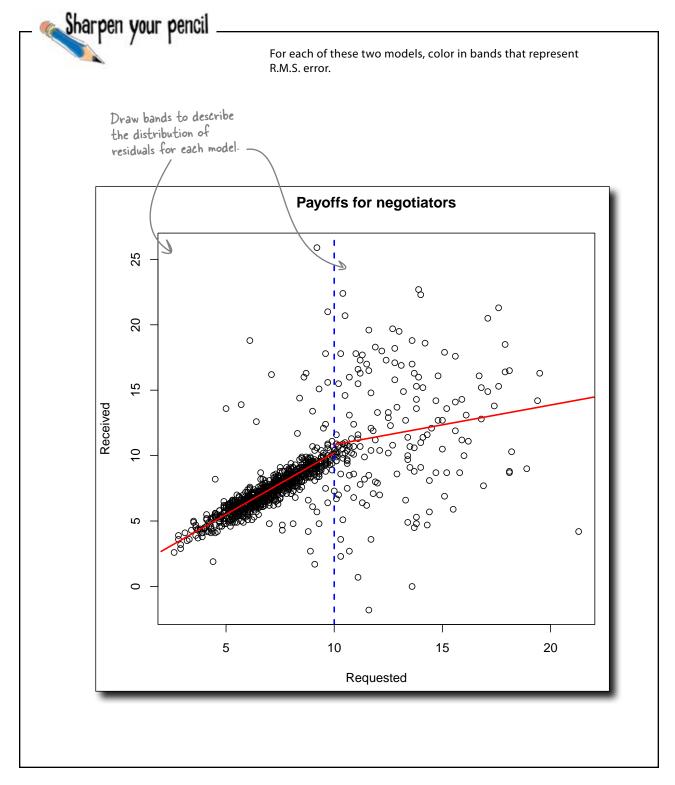
A: You certainly could. And if you did, how powerful do you think your 3,000 regressions would be at predicting people's raises?

Q: Ummm...

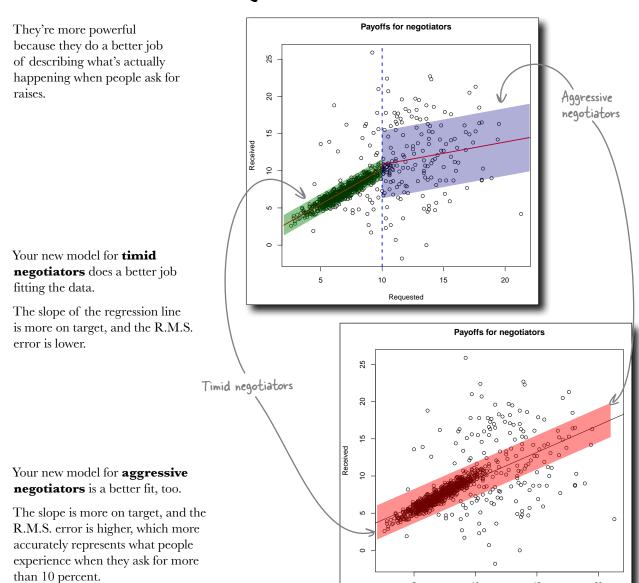
there are no Dumb Questions

A: If you did that, you'd be able to explain everything. All your data points would be accounted for, and the R.M.S. error of your regression equations would all be zero. But your models would have lost all ability to predict anything.

So what would an analysis look like that had a whole lot of predictive power but not a lot of explanatory power?


A: It'd look something like your first model. Say your model was this: "No matter what you ask for, you'll receive somewhere between -1,000 percent and 1,000 percent in raises."

That just sounds dumb.


Sure, but it's a model that has incredible predictive power. The chances are that no one you ever meet will be outside that range. But the model doesn't explain anything. With a model like that, you sacrifice explanatory power to get predictive power.

O: So that's what zero error looks like: no ability to predict anything.

A: That's it! Your analysis should be somewhere between having complete explanatory power and complete predictive power. And where you fall between those two extremes has to do with your best judgemnt as an analyst. What sort of model does your client need?

Your segmented models manage error better than the original model

Let's implement these models in R...

15

20

10

Requested

5

It's time to implement those new models and segments in R. Once you have the models created, you'll be able to use the coefficients to refine your raise prediction algorithm.

Create new linear model objects that correspond to your two segments by typing the following at the command line:

This code tells R to look only at the data in your database for negotiators...

myLmBig <- lm(received[negotiated==TRUE & requested > 10]~

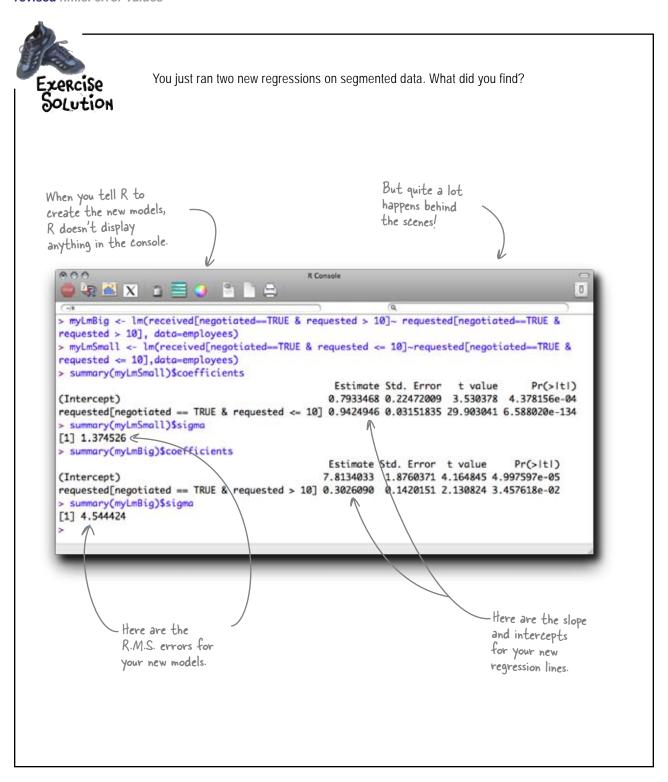
requested[negotiated==TRUE & requested > 10],

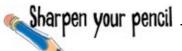
data=employees)

myLmSmall <- lm(received[negotiated==TRUE & requested <= 10]~

requested[negotiated==TRUE & requested <= 10],

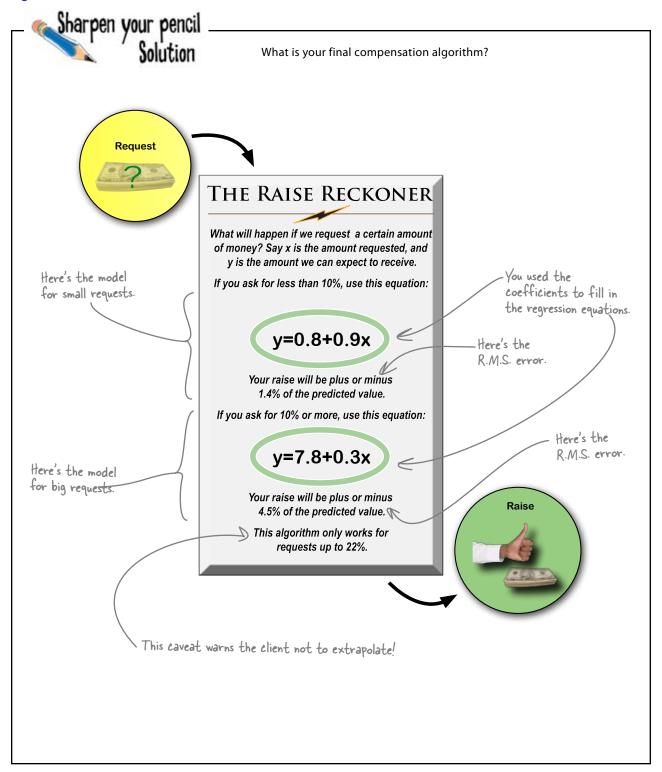
data=employees)


...and to split the segments at


the 10% raise request range.

Look at the summaries of both linear model objects using these versions of the summary() function. Annotate these commands to show what each one does:

summary(myLmSmall)\$coefficients
summary(myLmSmall)\$sigma
summary(myLmBig)\$coefficients
summary(myLmBig)\$sigma


These results will make your
algorithm much more powerful.

You now have everything you need to create a much more powerful algorithm that will help your customers understand what to expect no matter what level of raise they request. Time to toss out the old algorithm and incorporate everything you've learned into the new one.

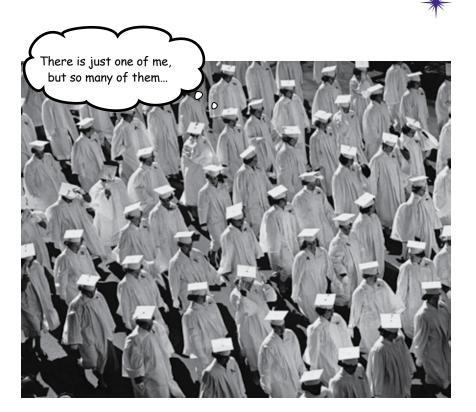
Using the slopes and intercepts equations to describe both of the		
For what levels of raises does ea	ich model apply?	Don't forget about avoiding extrapolation!
How close to the prediction show depending on which model she	ald your client expect her own raise to be, uses?	Think about the R.M.S. error
our answers will be	THE RAISE RECKONER What will happen if we request a certain amount of money?	Raise

Your clients are returning in droves

Your new algorithm is really starting to pay off, and everyone's excited about it.

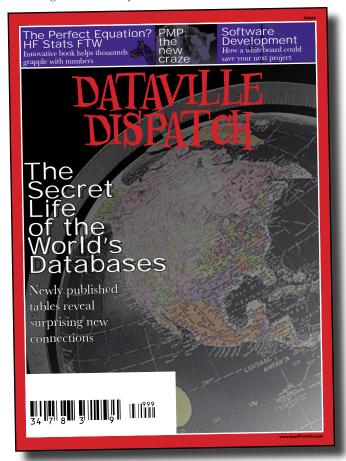
Now people can decide whether they want to take the riskier strategy of asking for a lot of money or just would rather play it safe and ask for less.

The people who want to play it safe are getting what they want, and the risk-takers understand what they're getting into when they ask for a lot.



12 relational databases

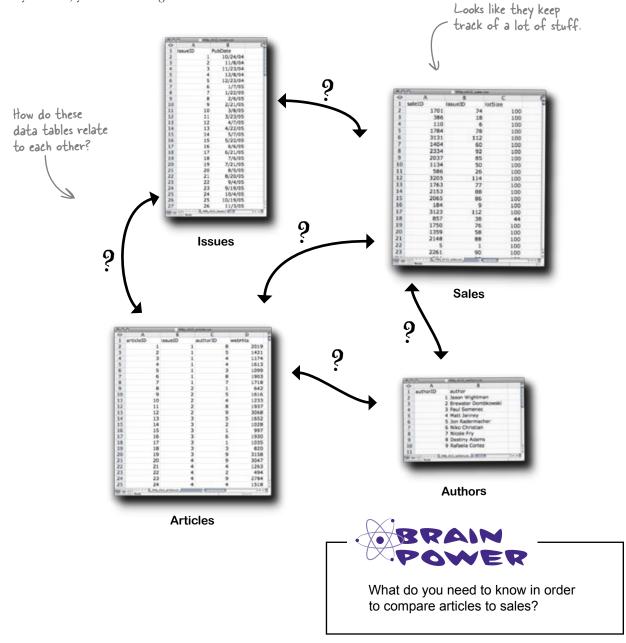
Can you relate?


How do you structure really, really multivariate data?

A spreadsheet has only *two dimensions*: rows and columns. And if you have a bunch of dimensions of data, the **tabular format** gets old really quickly. In this chapter, you're about to see firsthand where spreadsheets make it really hard to manage multivariate data and learn **how relational database management systems** make it easy to store and retrieve countless permutations of multivariate data.

The Dataville Dispatch wants to analyze sales

The *Dataville Dispatch* is a popular news magazine, read by most of Dataville's residents. And the *Dispatch* has a very specific question for you: they want to tie the number of articles per issue to sales of their magazine and find an optimum number of articles to write.


They want each issue be as cost effective as possible. If putting a hundred articles in each issue doesn't get them any more sales than putting fifty articles in each issue, they don't want to do it. On the other hand, if fifty article issues correlate to *more* sales than ten article issues, they'll want to go with the fifty articles.

They'll give you **free advertising** for your analytics business for a year if you can give them a thorough analysis of these variables.

Here's the data they keep to track their operations

The *Dispatch* has sent you the data they use to manage their operations as four separate spreadsheet files. The files all relate to each other in **some way**, and in order to analyze them, you'll need to figure out how.

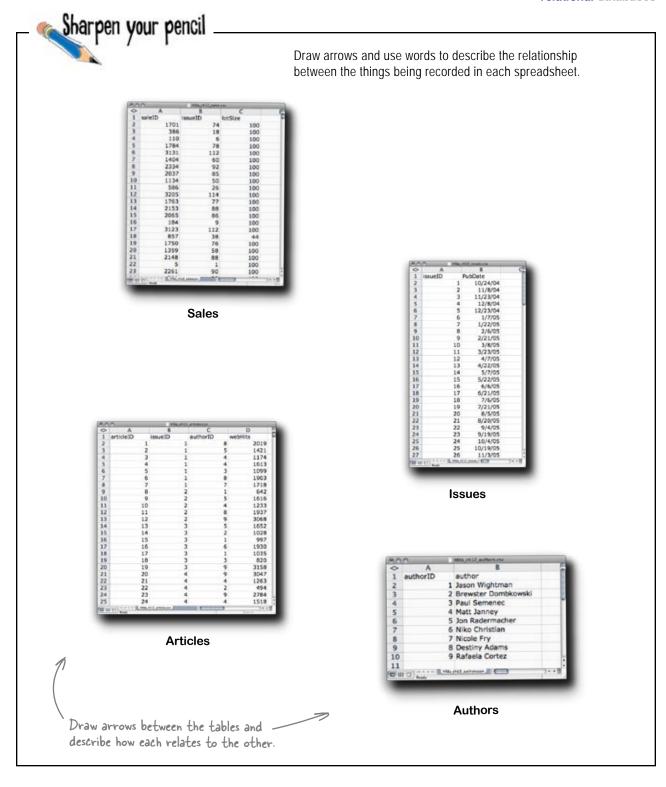
You need to know how the data tables relate to each other

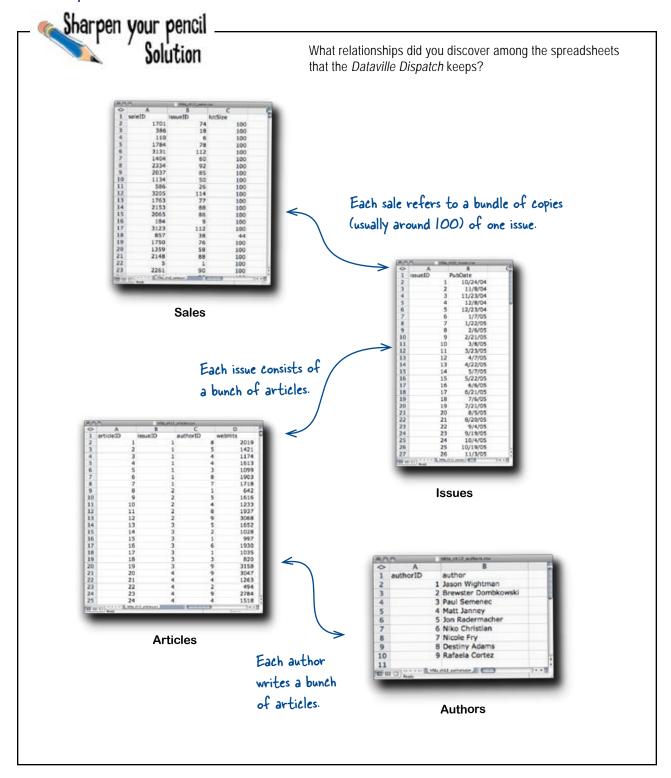
The table or tables you create to get the answers that the *Dispatch* wants will tie **article count** to **sales**.

So you need to know *how* all these tables relate to each other. What specific data fields tie them together? And beyond that, what is the **meaning** of the relationships?

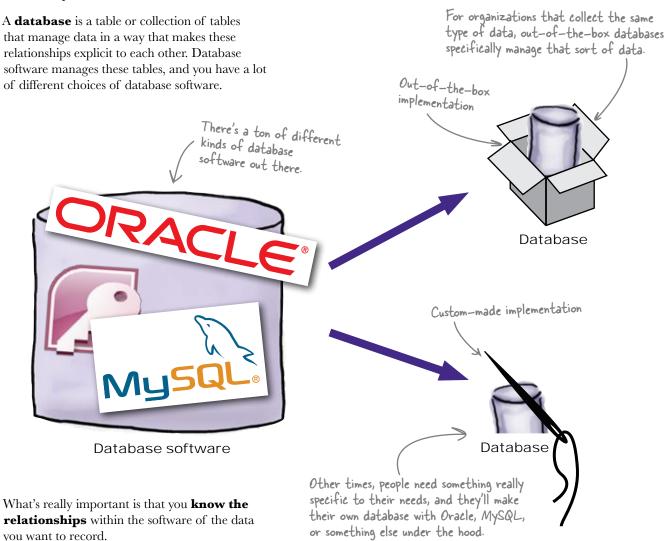
Here is what the Dispatch has to say about how they maintain their data.

From: Dataville Dispatch

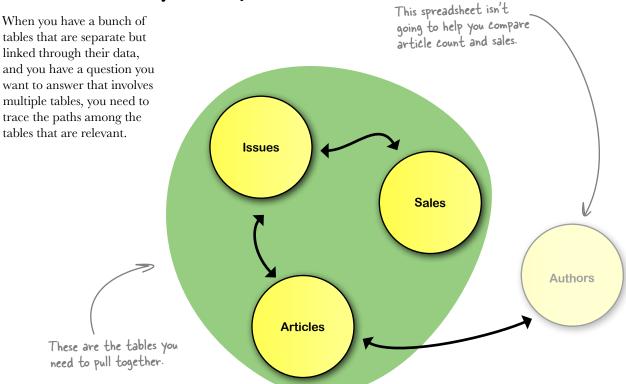

To: Head First


Subject: About our data

Well, each issue of the magazine has a bunch of articles, and each article has an author, so in our data we tie the authors to the articles. When we have an issue ready, we call our list of wholesalers. They place orders for each issue, which we record in our sales table. The "lot size" in the table you're looking at counts the number of copies of that issue that we sell—usually in denominations of 100, but sometimes we sell less. Does that help?


— DD

They have a lot of stuff to record, which is why they need all these spreadsheets.


A database is a collection of data with well-specified relations to each other

Here's the big question.

So how do you use this knowledge to calculate article <u>count</u> and sales total for each issue?

Trace a path through the relations to make the comparison you need

Create a spreadsheet that goes across that path

Once you know which tables you need, then you can come up with a plan to tie the data together with formulas.

Here, you need a table that compares article count and sales for each issue. You'll need to write formulas to calculate those values.

Issue	Article count	Sales Total		
1	5	1250		
2	7	1800		
3	8	1500		
4	6	1000		
	ĵ	<u></u>		

In the next exercise, you'll calculate these values.

You'll need formulas for these.

Let's create a spreadsheet like the one in the facing page and start by calculating the "Article count" for each issue of the Dispatch.

Open the hfda_ch12_issues.csv file and save a copy for your work. Remember, you don't want to mess up an original file! Call your new file "dispatch analysis.xls".

www.headfirstlabs.com/books/hfda/ hfda ch12 articles.csv

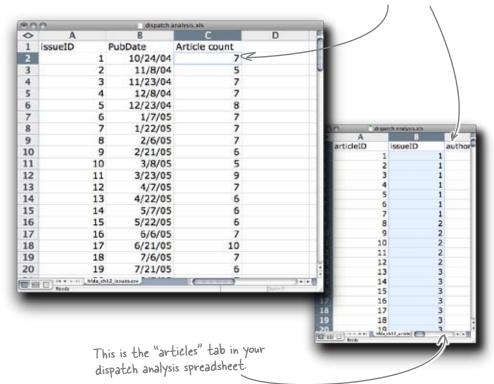
hfda ch12 issues.csv

dispatch analysis.xls

② Open *hfda_ch12_articles.csv* and right-click an the tab that list the file name at the bottom of the sheet. Tell your spreadsheet to move the file to your dispatch analysis.xls document.

Create a column for Article count on your issue sheet. Write a COUNTIF formula to count the number of articles for that issue, and copy and paste that formula for each issue.

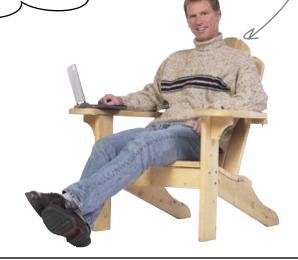
What sort of article count did you find each issue to have?


Exercise Solution

- Open the hfda_ch12_issues.csv file and save a copy for your work. Remember, you don't want to mess up an original file! Call your new file "dispatch analysis.xls".
- Open hfda_ch12_articles.csv and right-click and the tab that list the file name at the bottom of the sheet. Tell your spreadsheet to move the file to your dispatch analysis.xls document.
- Create a column for Article count on your issue sheet. Write a COUNTIF formula to count the number of articles for that issue, and copy and paste that formula for each issue.

The formula looks at the "articles" tab in your spreadsheet.

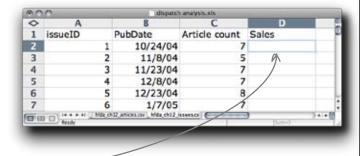
=COUNT/F(hfda ch/2 articles.csv/B:B,hfda ch/2 issues.csv/A2)


It counts the number of times each issue shows up in the list of articles.

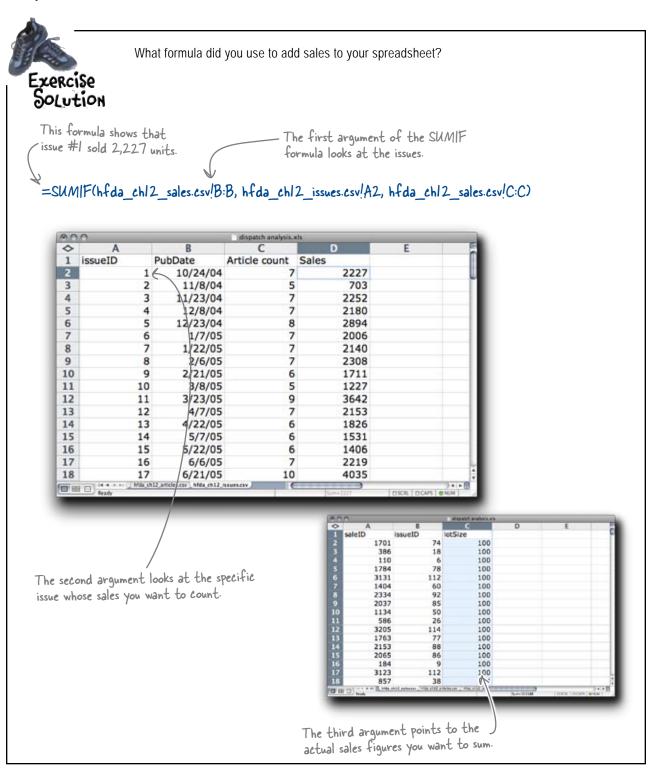
Cool! When you add the sales figures to your spreadsheet, keep in mind that the numbers just refer to units of the magazine, not dollars. I really just need you to measure sales in terms of the number of magazines sold, not in dollar terms.

Here's the Dispatch's managing editor.

Sounds good... let's add sales to this list!


Exercise

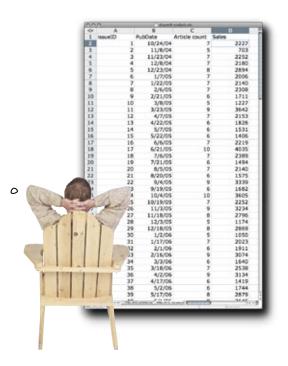
www.headfirstlabs.com/books/hfda/ hfda_ch12_sales.csv


Copy the *hfda_ch12_sales.csv* file as a new tab in your *dispatch analysis.xls*. Create a new column for Sales on the same sheet you used to count the articles.

Add this column and put your new formulas here.

Add a field for sales totals to the spreadsheet you are creating.

Use the SUMIF formula to tally the sales figures for issueID #1, putting the formula in cell C2. Copy that formula and then paste it for each of the other issues.



Your summary ties article count and sales together

This is exactly the spreadsheet you need to tell you whether there is a relationship between the number of articles that the Dataville Dispatch publishes every issue and their sales.

> This seems nice. But it'd be a little easier to understand if it were made into a scatterplot. Have you ever heard of scatterplots?

Definitely! Let's let him have it

Sharpen your pencil

Open R and type the getwd() command to figure out where R keeps its data files. Then, in your spreadsheet, go to File > Save As... and save your data as a CSV into that directory.

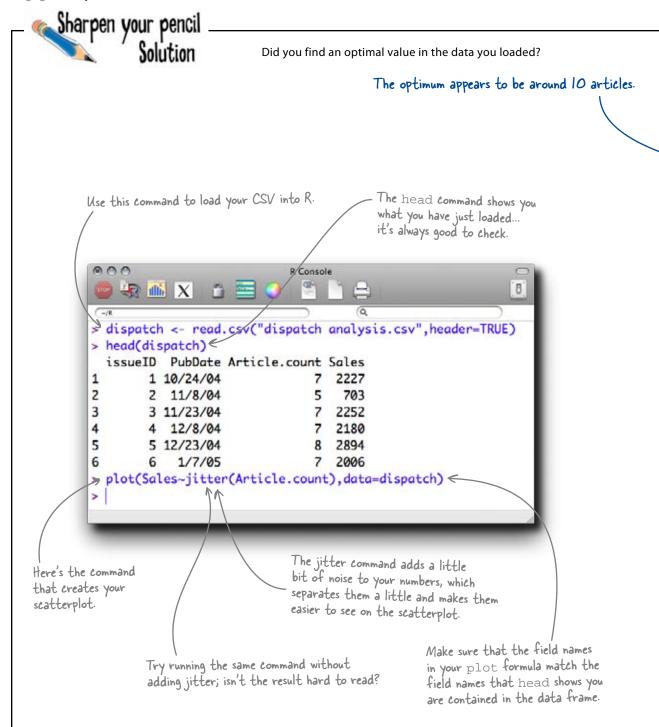
Execute this command to load your data into R:

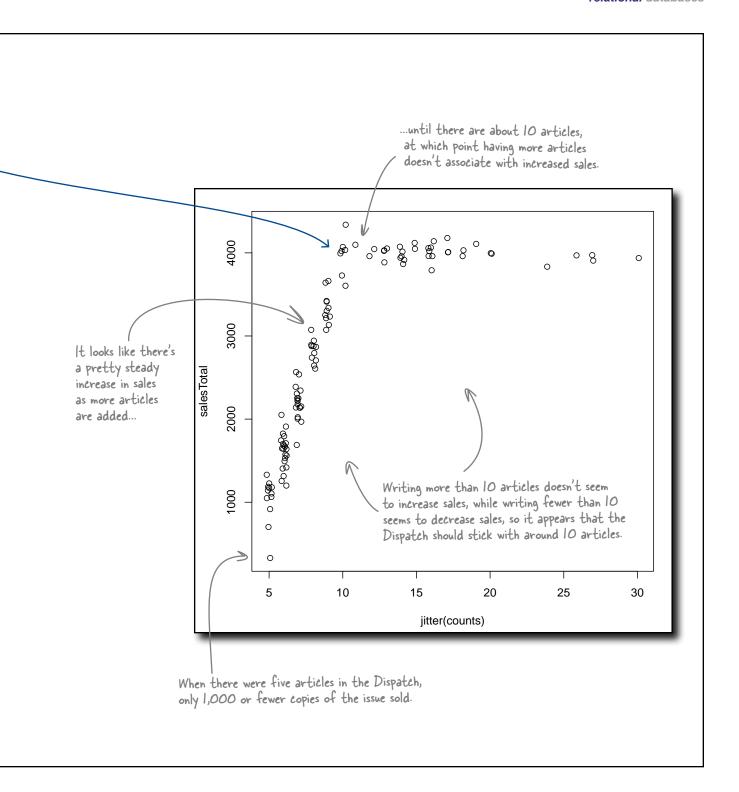
dispatch <- read.csv("dispatch analysis.csv", header=TRUE)

Name your file


dispatch analysis.csv.

Once you have your data loaded, execute this function. Do you see an optimal value?


plot(Sales~jitter(Article.count),data=dispatch)


You'll see how jitter works in a second...

This function tells you R's working directory, where it looks for files.

Save your spreadsheet data as a CSV in R's working directory.

Looks like your scatterplot is going over really well

Dumb Questions

Do people actually store data in linked spreadsheets like that?

A: Definitely. Sometimes you'll receive extracts from larger databases, and sometimes you'll get data that people have manually kept linked together like that.

Basically, as long as there are those codes that the formulas can read, linking everything with spreadsheets is tedious but not impossible.

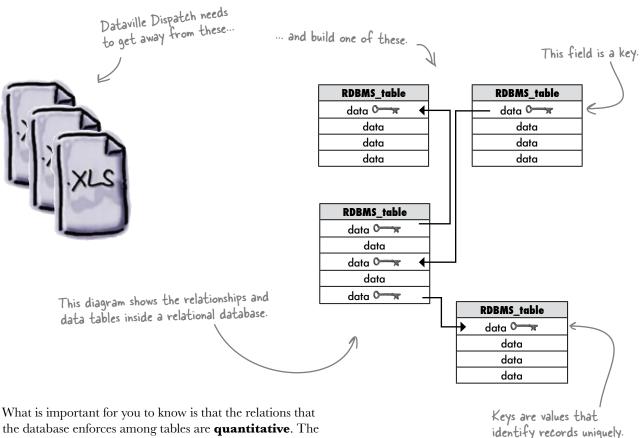
Well, you're not always so lucky to recieve data from multiple tables that have neat little codes linking them together. Often, the data comes to you in a messy state, and in order to make the spreadsheets work together with formulas, you need to do some clean-up work on the data. You'll learn more about how to do that in the next chapter.

Is there some better software mechanism for tying data from different tables together?

A: You'd think so, right?

Copying and pasting all that data was a pain

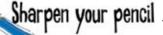
It would suck to go through that process every time someone wanted to **query** (that is, to ask a question of) their data.


Besides, aren't computers supposed to be able to do all that grunt work for you?

Wouldn't it be dreamy if there were a way to maintain data relations in a way that'd make it easier to ask the database questions? But I know it's just a fantasy...

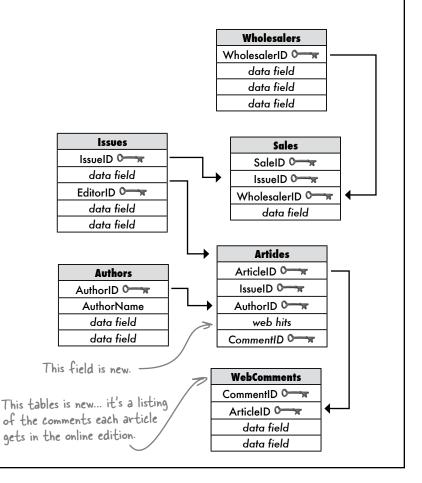
Relational databases manage relations for you

One of the most important and powerful ways of managing data is the RDBMS or **relational database management system**. Relational databases are a huge topic, and the more you understand them, the more use you'll be able to squeeze out of any data you have stored in them.

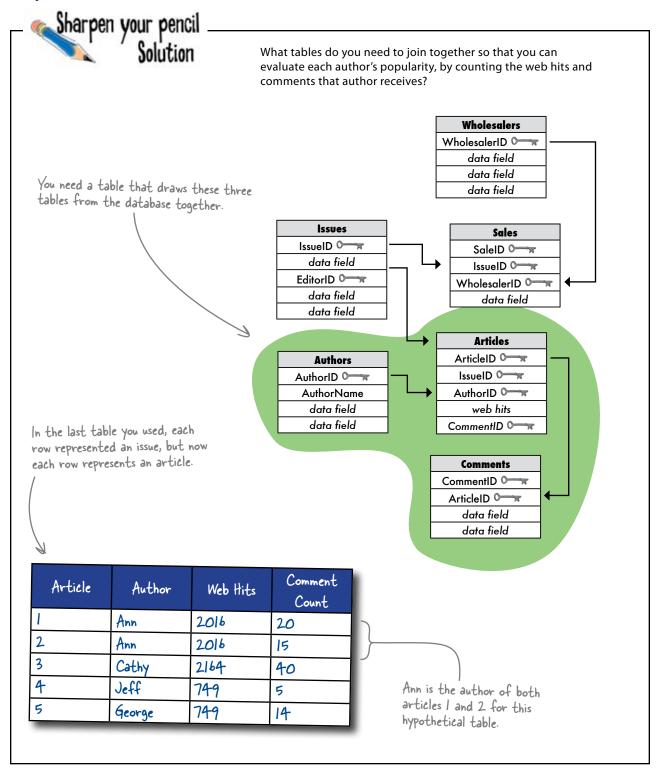

What is important for you to know is that the relations that the database enforces among tables are **quantitative**. The database doesn't care what an "issue" or an "author" is; it just knows that one issue has multiple authors.

Each row of the RDBMS has a unique key, which you'll often see called IDs, and it it uses the keys to make sure that these quantitative relationships are never violated. Once you have a RDBMS, watch out: well-formed relational data is a treasure trove for data analysts.

If the Dataville Dispatch had a RDBMS, it would be a lot easier to come up with analyses like the one you just did. Pataville Pispatch built an RPBMS with your relationship diagram


It was about time that the *Dispatch* loaded all those spreadsheets into a real RDBMS. With the diagram you brainstormed, along with the managing editor's explanation of their data, a database architect pulled together this relational database.

Now that we've found the optimum article count, we should figure out who our most popular authors are so that we can make sure they're always in each issue. You could count the web hits and comments that each article gets for each author.


Here is the schema for the *Dataville Dispatch*'s database. Circle the tables that you'd need to pull together into a single table in order to show which author has the articles with the most web hits and web comments.

Then draw the table below that would show the fields you'd need in order create those scatterplots.

Draw the table you'd need to have here. _

0

Pataville Dispatch extracted your data using the SQL language

SQL, or Structured Query Language, is how data is extracted from relational databases. You can get your database to respond to your SQL questions either by tying the code directly or using a graphical interface that will create the SQL code for you.

SELECT AuthorName FROM Author WHERE AuthorID=1;

Example SQL Query

Here's the output from the query that gets you the table you want.

> www.headfirstlabs.com/books/hfda/ hfda_ch12_articleHitsComments.csv

> > The query that created this data is much more complex than the example on the left

This query returns the name of the author listed in the Author table with the AuthorID field equal to 1.

You don't have to learn SQL, but it's a good idea. What's crucial is that you understand **how to ask the right questions** of the database by understanding the tables inside the database and the relations among them.

Use the command below to load the hfda_ch12_ articleHitsComments.csv spreadsheet into R, and then take a look at the data with the head command:

articleHitsComments <- read.csv("http://www.headfirstlabs.com/books/hfda/ hfda_ch12_articleHitsComments.csv",header=TRUE)

Make sure you're connected to the Internet for this command

We're going to use a more powerful function to create scatterplots this time. Using these commands, load the lattice package and then run the xyplot formula to draw a "lattice" of scatterplots:

library(lattice)

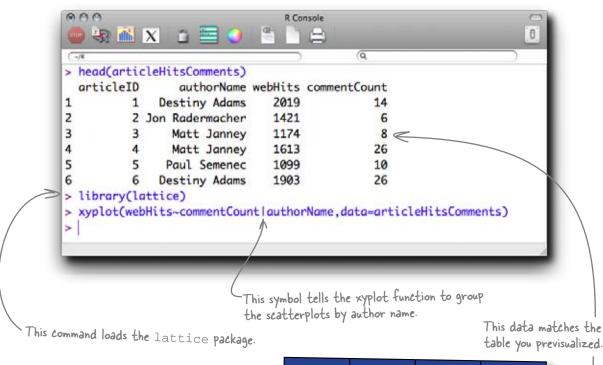
xyplot(webHits~commentCount|authorName,data=articleHitsComments)

This is a new symbol!

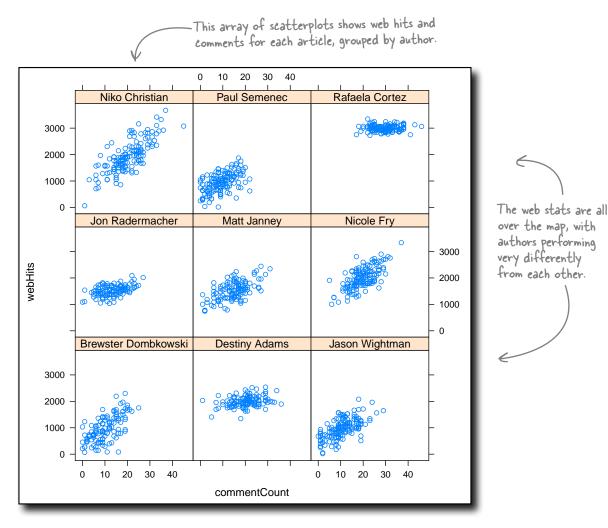
What author or authors perform the best, based on these metrics?

This is the data frame that you loaded.

What do your scatterplots show? Do certain authors get greater sales?


SOLUTION

Load the *hfda_ch12_articleHitsComments.csv* spreadsheet into R.


We're going to use a more powerful function to create scatterplots this time. Using these commands, load the lattice package and then run the xyplot formula to draw a "lattice" of scatterplots:

library(lattice)

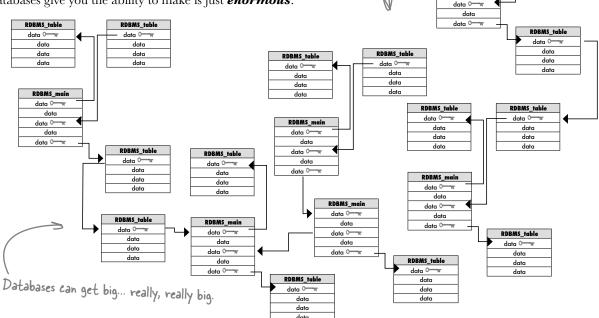
xyplot(webHits~commentCount|authorName,data=articleHitsComments)

Article	Author	Web Hits	Comment Count
1	Ann	2016	20
2	Ann	2016	15
3	Cathy	2164	40
4	Jeff	749	5
5	George	749	14

What author or authors perform the best on these metrics?

It's pretty clear that Rafaela Cortez performs the best. All her articles have 3,000 or more web hits, and host of them show more than 20 comments. People seem really to like her. As for the rest of the authors, some (like Destiny and Nicole) tend to do better than the rest. Nike has a pretty big spread in his performance, while Brewster and Jason tend not to be too popular.

Here's what the managing editor has to say about your most recent analysis.


From:Dataville Dispatch Subject: About our data

Wow, that really surprised me. I'd always suspected that Rafaela and Destiny were our star writers, but this shows that they're way ahead of everyone. Big promotion for them! All this information will make us a much leaner publication while enabling us to better reward our authors' performance. Thank you.

— DD

Comparison possibilities are endless if your data is in a RPBMS

The complex visualization you just did with data from the *Dispatch*'s RDMS just scratches the tip of the iceberg. Corporate databases can get big—really, really big. And what that means for you as an analyst is that the range of comparisons relational databases give you the ability to make is just *enormous*.

If you can envision it, a RDBMS can tie data together for powerful comparisons. Relational databases are a dream come true for analysts

The Dataville Dispatch's database structure isn't anywhere near this complex, but databases easily get this large.

Think about how far you can

RDBMS main

data

reach across this sea of tables to make a brilliant comparison!

RDBMS_table

data

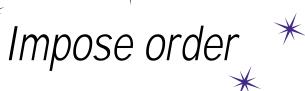
data

data

data 0

You're on the cover

The authors and editors of the *Dataville Dispatch* was so impressed by your work that they decided to feature you in their big data issue! Nice work job. Guess who wrote the big story?

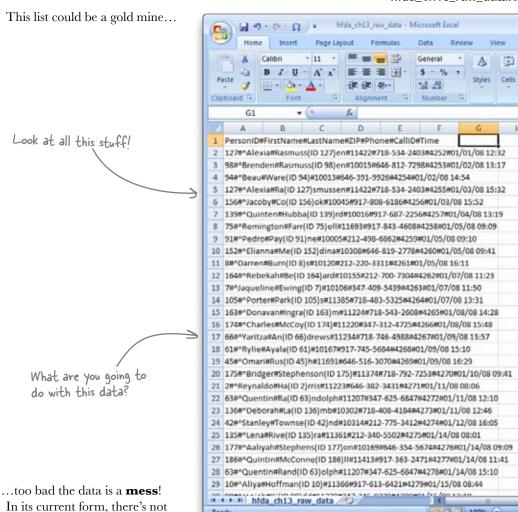

I can't believe we had this data all along but never could figure out how to use it. Thank you so much.

Looks like you made some friends on the writing staff!

13 cleaning data

Your data is useless...

...if it has messy structure. And a lot of people who *collect* data do a crummy job of maintaining a neat structure. If your data's not neat, you can't slice it or dice it, run formulas on it, or even really *see* it. You might as well just ignore it completely, right? Actually, you can do better. With a *clear vision* of how you need it to look and a few *text manipulation tools*, you can take the funkiest, craziest mess of data and *whip* it into something useful.

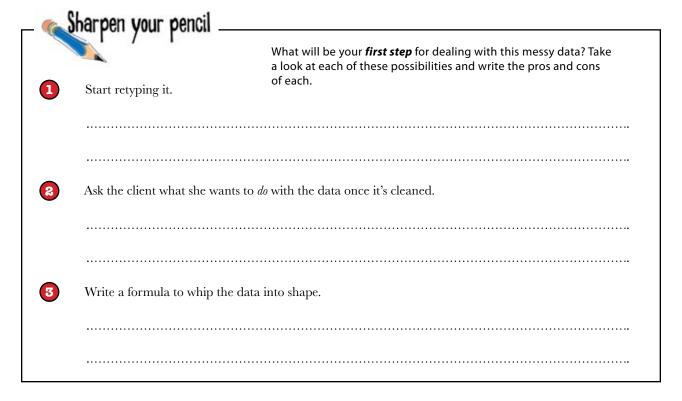

Just got a client list from a defunct competitor

Your newest client, Head First Head Hunters, just received a **list of job seekers** from a defunct competitor. They had to spend big bucks to get it, but it's hugely valuable. The people on this list are the best of the best, the most employable people around.

www.headfirstlabs.com/books/hfda/ hfda ch13 raw data.csv

Editing

much they can do with this data. That's why they called


you. Can you help?

The dirty secret of data analysis

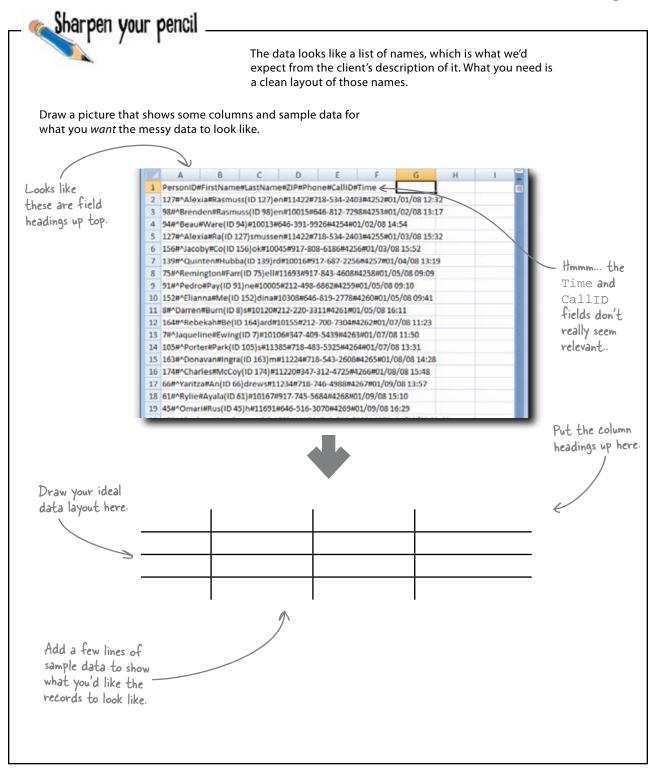
The dirty secret of data analysis is that as analyst you might spend more time *cleaning* data than *analyzing* it. Data often doesn't arrive perfectly organized, so you'll have to do some heavy text manipulation to get it into a useful format for analysis.

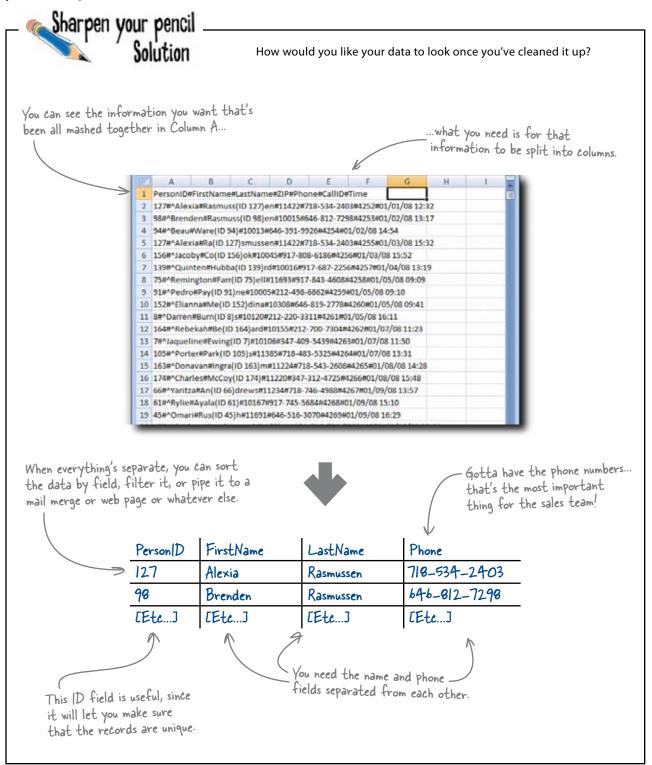
Which of these options did you choose as your first step?

- Start retyping it.
 - This sucks. It'll take forever, and there's a good chance I'll transcribe it incorrectly, messing up the data. If this is the only way to fix the data, we'd better be sure before going this route.
- Ask the client what she wants to do with the data once it's cleaned.

 This is the way to go. With an idea of what the client wants to do with the data, I can make sure that whatever I do puts the data in exactly the form that they need.
- Write a formula to whip the data into shape.

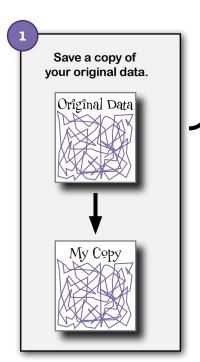
 A powerful formula or two would definitely help out, once we have an idea of what the data needs to look like from the client. But let's talk to the client first.


0

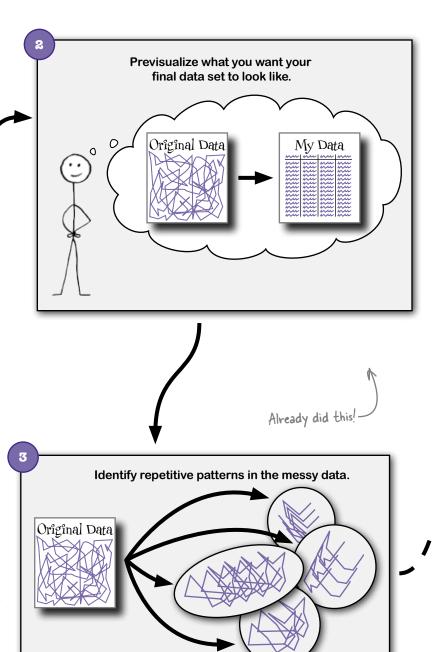

Head First Head Hunters wants the list for their sales team

We need a call list for our sales team to use to contact prospects we don't know. The list is of job seekers who have been placed by our old competitor, and we want to be the ones who put them in their next job.

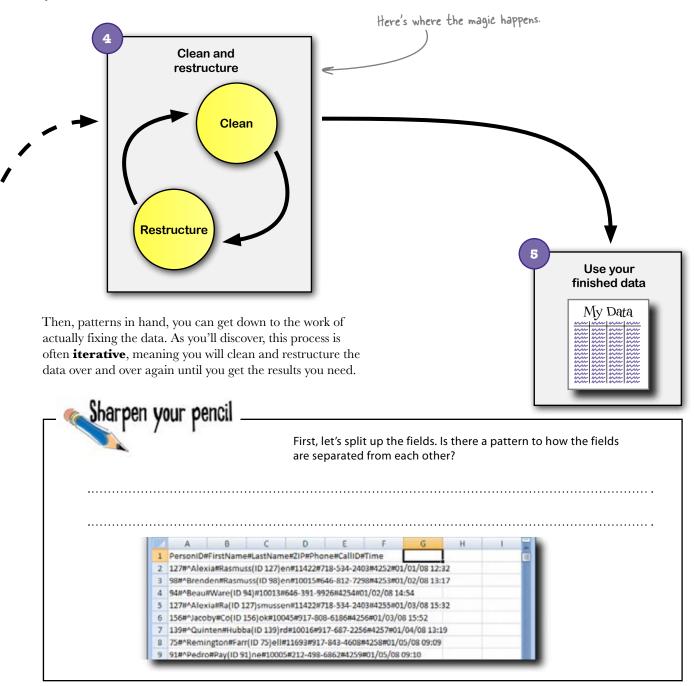
Even though the raw data is a mess, it looks like they just want to extract names and phone numbers. Shouldn't be too much of a problem. Let's get started...

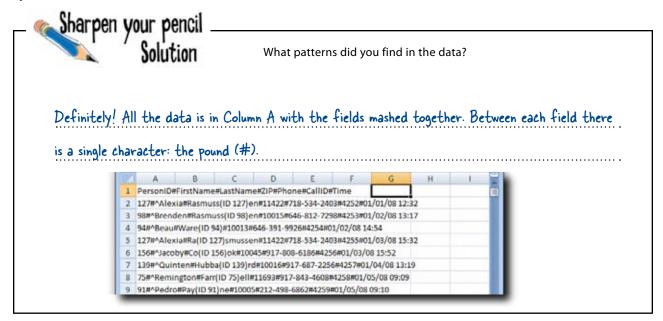

News flash! The data's still a mess. How are we going to fix it?

It's true: thinking about what neat data looks like won't actually make it neat. But we needed to previsualize a solution before getting down into the messy data. Let's take a look at our **general strategy** for fixing messy data and then **start coding it**...

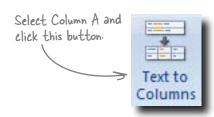

Cleaning messy data is all about preparation

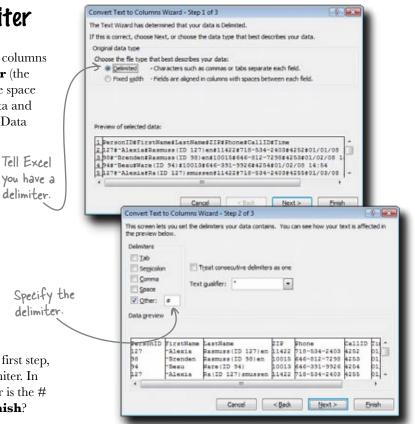
It may go without saying, but cleaning data should begin like any other data project: making sure you have copies of the original data so that you can go back and check your work.




Once you've figured out what you need your data to look like, you can then proceed to **identify patterns in the messiness**.

The last thing you want to do is go back and change the data line by line—that would take forever—so if you can identify repetition in the messiness you can write formulas and functions that exploit the patterns to make the data neat.

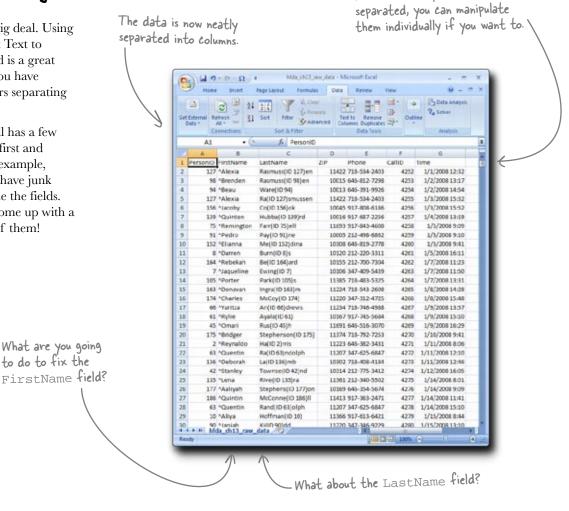

Once you're organized, you can fix the data itself



Excel has a handy tool for splitting data into columns when the fields are separated by a **delimiter** (the technical term for a character that makes the space between fields). Select Column A in your data and press the Text to Columns button under the Data tab...

... and now you've started the Wizard. In the first step, tell Excel that your data is split up by a delimiter. In the second step, tell Excel that your delimiter is the # character. What happens when you click **Finish**?

delimiter

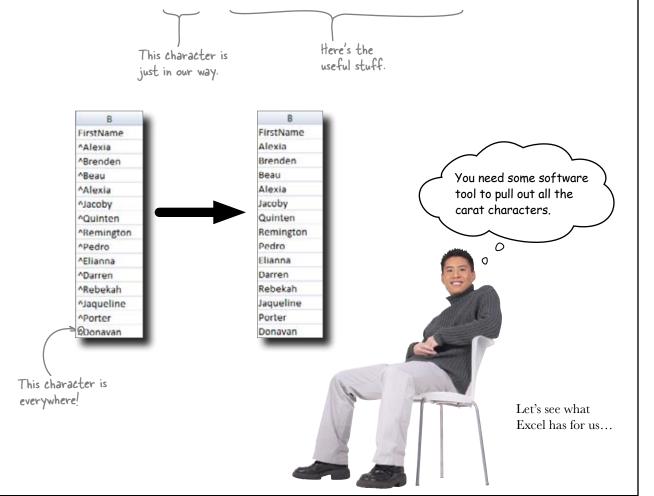

Now that the pieces of data are

Excel split your data into columns using the delimiter

to do to fix the

And it was no big deal. Using Excel's Convert Text to Column Wizard is a great thing to do if you have simple delimiters separating your fields.

But the data still has a few problems. The first and last names, for example, both appear to have junk characters inside the fields. You'll have to come up with a way to get rid of them!


Sharpen your penc		
	What's the pattern you'd use to fix the FirstName column?	

Is there a pattern to the messiness in the FirstName field?

At the beginning of every name there is a 1 character. We need to get rid of all of them in order to have neat first names.

^FirstName

Match each Excel text formula with its function. Which function do you think you'll need to use the clean up the Name column?

FIND Tells you the length of a cell.

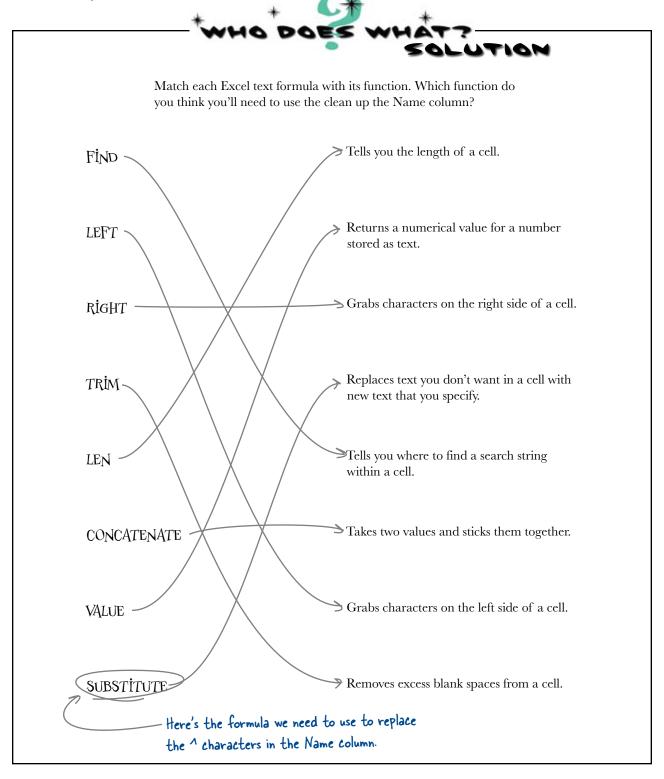
LEFT Returns a numerical value for a number

stored as text.

RİGHT Grabs characters on the right side of a cell.

TRİM Replaces text you don't want in a cell with

new text that you specify.


LEN Tells you where to find a search string

within a cell.

CONCATENATE Takes two values and sticks them together.

VALUE Grabs characters on the left side of a cell.

SUBSTİTUTE Removes excess blank spaces from a cell.

Use SUBSTITUTE to replace the carat character

To fix the FirstName field, type this formula into cell H2:
=SUBSTITUTE(B2, "^", "")

Copy this formula and paste it all the way down to the end of the data in Column H. What happens?

Put the formula here.

Dumb Questions

What if I want to take the characters on the left and right of a cell and stick them together? It doesn't look there's a formula that does just that.

A: There isn't, but if you nest the text functions inside of each other you can achieve much more complicated text manipulations. For example, if you wanted to take the first and last characters inside of cell A1 and stick them together, you'd use this formula:

CONCATENATE(LEFT(A1,1),
 RIGHT(A1,1))

So I can nest a whole bunch of text formulas inside of each other?

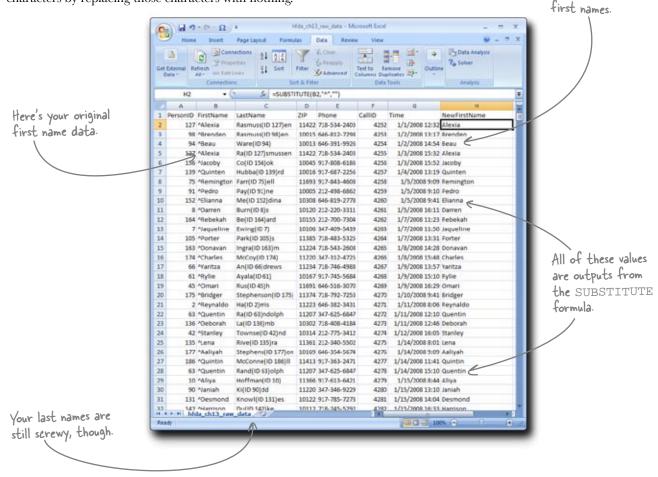
A: You can, and it's a powerful way to manipulate text. There's a problem, though: if your data is really messy and you have to nest a whole bunch of formulas inside of each other, your entire formula can be almost impossible to read.

Who cares? As long as it works, I'm not going to be reading it anyway.

Well, the more complex your formula, the more likely you'll need to do subtle tweaking of it. And the less readable your formula is, the harder that tweaking will be.

Then how do I get around the problem of formulas that are big and unreadable?

A: Instead of packing all your smaller formulas into one big formula, you can break apart the small formulas into different cells and have a "final" formula that puts them all together. That way, if something is a little off, it'll be easier to find the formula that needs to be tweaked.


You know, I bet R has much more powerful ways of doing text manipulation.

A: It does, but why bother learning them?
If Excel's SUBSTITUTE formula handles your issue, you can save your self some time by skipping R.

You cleaned up all the first names

Using the SUBSTITUTE formula, you had Excel grab the ^ symbol from each first name and replace it with nothing, which you specified by two quotation marks ("").

Lots of different software lets you get rid of crummy characters by replacing those characters with nothing.

To make the original first name data go away forever copy the H column and then Paste Special > Values to turn these values into actual text rather than formula outputs. After that you can **delete** the FirstName column so that you never have to see those pesky ^ symbols again.

You can delete away... as long as you saved a copy of the original file so you can refer back to it if you made a mistake.

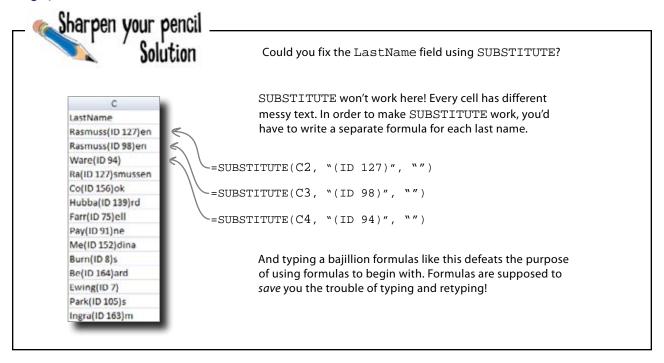
Here are your

corrected

0

Hmpf. That first name pattern was easy because it was just a single character at the beginning that had to be removed. But the last name is going to be harder, because it's a tougher pattern.

Let's try using ${\tt SUBSTITUTE}$ again, this time to fix the last names.



LastName
Rasmuss(ID 127)en
Rasmuss(ID 98)en
Ware(ID 94)
Ra(ID 127)smussen
Co(ID 156)ok
Hubba(ID 139)rd
Farr(ID 75)ell
Pay(ID 91)ne
Me(ID 152)dina
Burn(ID 8)s
Be(ID 164)ard
Ewing(ID 7)
Park(ID 105)s
Ingra(ID 163)m

First, look for the pattern in this messiness. What would you tell SUBSTITUTE to replace? Here's the syntax again:

=SUBSTITUTE(your reference cell, the text you want to replace, what you want to replace it with)

Can you write a formula that works?

The last name pattern is too complex for SUBSTITUTE

The SUBSTITUTE function looks for a pattern in the form of a single text string to replace. The problem with the last names are that **each has** a **different text string** to replace.

And that's not all: the pattern of messiness in the LastName field is more complex in that the messy strings show up in **different positions** within each cell and they have **different lengths**.

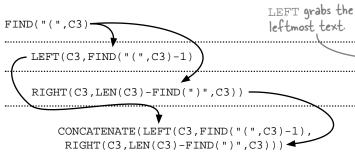
The messiness here starts on the eighth character of the cell...

Rasmuss(ID 98)en

...and here it starts on the third character!

The length of this text is seven characters.

The length of this text is seven characters.


The length of this text is seven characters.

The length of this text is seven characters.

The length of this text is seven characters.

Handle complex patterns with nested text formulas

Once you get familiar with Excel text formulas, you can **nest** them inside of each other to do complex operations on your messy data. Here's an example:

The formula *works*, but there's a **problem**: it's starting to get really hard to read. That's not a problem if you write formulas perfectly the first time, but you'd be better off with a tool that has power *and* simplicity, unlike this nested CONCATENATE formula.

The FIND formula returns a number that represents the position of the "(".

Rasmuss(ID 98)en

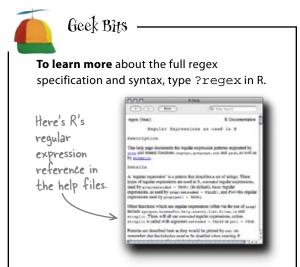
⇒Rasmuss(ID 98)en

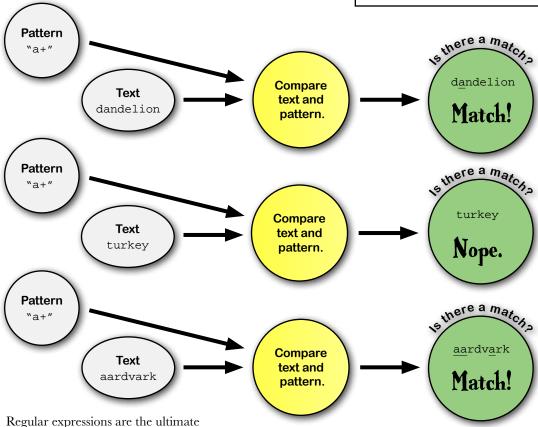
Rasmuss(ID 98)en 8

RIGHT grabs the rightmost text.

Rasmussen

CONCATENATE puts it all together.


Wouldn't it be dreamy if there were an easier way to fix complex messes than with long, unreadable formulas like that one. But I know it's just a fantasy...



R can use regular expressions to crunch complex data patterns

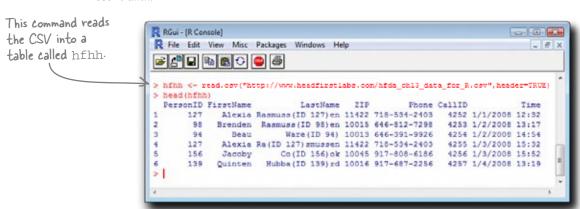
Regular expressions are a programming tool that allows you to specify complex patterns to match and replace strings of text, and R has a powerful facility for using them.

Here's a simple regular expression **pattern** that looks for the letter "a". When you give this pattern to R, it'll say whether there's a match.

Regular expressions are the ultimate tool for cleaning up messy data. Lots of platforms and languages implement regular expressions, even though Excel doesn't.

From: Head First Head Hunters

To: Analyst


Subject: Need those names NOW

Well get on with it! Those prospects are hot and are only getting colder. I want our sales force to start calling people

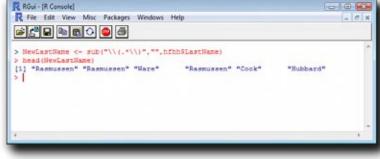
like yesterday!

Better get moving! Here goes:

Load your data into R and take a look at what you've got with the head command. You can either save your Excel file as a CSV and load the CSV file into R, or you can use the web link below to get the most recent data.

2 Run this regular expressions command

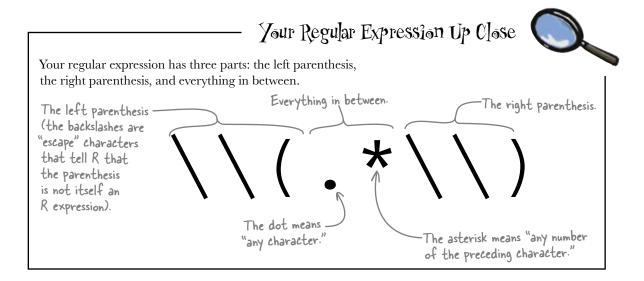
NewLastName <- sub("\\(.*\\)","",hfhh\$LastName)</pre>


Then take a look at your work by running the head command to see the first few rows of your table.

head(NewLastName)

What happens?

The sub command fixed your last names


The sub command used the **pattern** you specified and replaced all instances of it with blank text, effectively deleting every parenthetical text string in the LastName column.

If you can find a pattern in the messiness of your data, you can write a regular expression that will neatly exploit it to get you the structure you want.

No need to write some insanely long spreadsheet formula!

there are no Dumb Questions

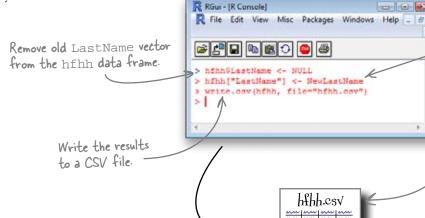
Some of those regular expression commands look really hard to read. How hard is it to master regular expressions?

A: They can be hard to read because they're really concise. That economy of syntax can be a real benefit when you have crazy-complex patterns to decode. Regular expressions are easy to get the hang of but (like anything complex) hard to master. Just take your time when you read them, and you'll get the hang of them.

What if data doesn't even come in a spreadsheet? I might have to extract data from a PDF, a web page, or even XML.

A: Those are the sorts of situations where regular expressions really shine. As long as you can get your information into some sort of text file, you can parse it with regular expressions. Web pages in particular are a really common source of information for data analysis, and it's a snap to program HTML tag patterns into your regex statements.

What other specific platforms use regular expressions?


A: Java, Perl, Python, JavaScript... all sorts of different programming languages use them.

Q: If regular expressions are so common in programming languages, why can't Excel do regular expressions?

A: On the Windows platform, you can use Microsoft's Visual Basic for Applications (VBA) programming language inside of Excel to run regular expressions. But most people would sooner just use a more powerful program like R than take the trouble to learn to program Excel. Oh, and since VBA was dropped from the recent release of Excel for Mac, you can't use regex in Excel for Mac, regardless of how badly you might want to.

Now you can ship the data to your client

Better write your new work to a CSV file for your client.

Regardless of whether your client is using Excel, OpenOffice, or any statistical software package, he'll be able to read CSV files.

- - X

Add the new LastName vector to high.

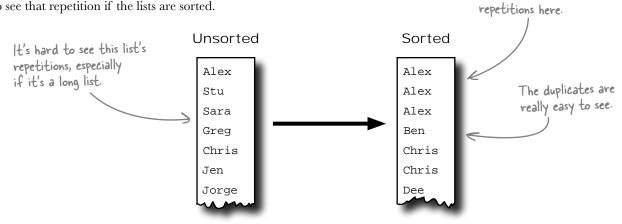
This file will be found in your R working directory, which R will tell you about with the getwd () command.

hfhh.csv

Maybe you're not quite done yet...

I can't use this! Look at all the duplicate entries!

He's got a point. Take "Alexia Rasmussen," for example. Alexia definitely shows up more than once. It could be that there are two separate people named Alexia Rasmussen, of course. But then again, both records here have PersonID equal to 127, which would suggest that they are the same person.


Maybe Alexia is **the only duplicate name** and the client is just reacting to that one mistake. To find out, you'll need to figure out how you can *see* duplicates more easily than just looking at this huge list as it is.

Lots of

Sort your data to show duplicate values together

If you have a lot of data, it can be hard to **see** whether values repeat. It's a lot easier to see that repetition if the lists are sorted.

Let's get a better look at the duplicates in your list by sorting the data.

Exercise

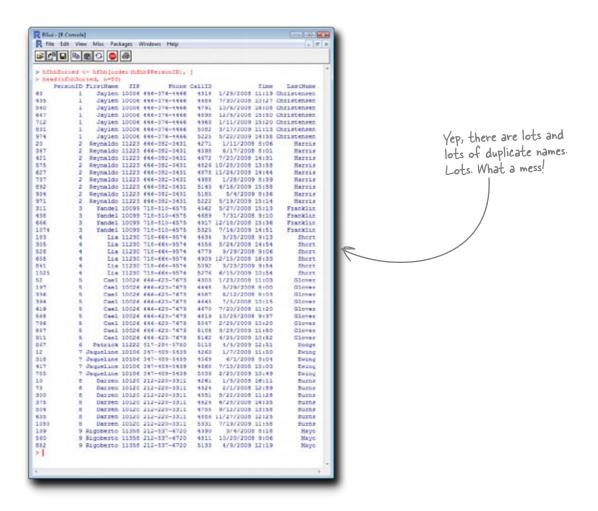
In R, you sort a data frame by using the order function inside of the subset brackets. Run this command:

A new, sorted copy of your list.

hfhhSorted <- hfhh[order(hfhh\$PersonID),]

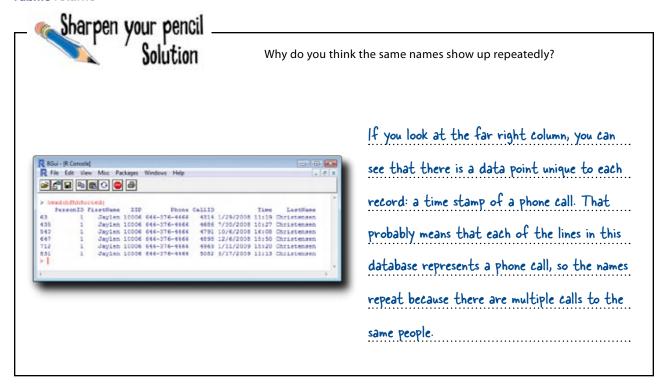
Because the PersonID field probably represents a unique number for each person, that makes it a good field to use it to sort. After all, it's possible that there's more than one person in the data named "John Smith."

Next, run the head command to see what you've created:

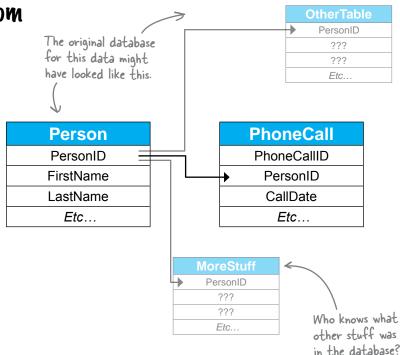

head(hfhhSorted, n=50)

What does R do?

Did sorting your data frame in R by PersonID reveal any duplicates?


Exercise Solution

When you get messy data, you should **sort liberally**. Especially if you have a lot of records. That's because it's often hard to see all the data at once, and sorting the data by different fields lets you visualize groupings in a way that will help you find duplicates or other weirdness.


		at the data. Can you say night be duplicated?
		Write your answer here
R RGui - R Corrole R File Edit View Micc Packages Windows Help	- 0 x	
	Time Lastfame 114 1/29/2008 11:19 Christensen 166 7/30/2008 10:27 Christensen	
540 1 Jaylen 10006 646-376-4466 4 647 1 Jaylen 10006 648-376-4466 4 712 1 Jaylen 10006 648-376-4466 4 831 1 Jaylen 10006 648-376-4466 4	991 10/6/2008 16:00 Christenam 998 12/6/2008 16:50 Christenam 1/11/2009 18:20 Christenam 1/11/2009 18:20 Christenam 3/17/2009 11:13 Christenam	
>1 (.*	

The data is probably from a relational database

If elements of your messy list repeat, then the data probably come from a relational database. In this case, your data is the output of a query that consolidated two tables.

Because you understand RDBMS architecture, you know that repetition like what we see here stems from **how queries return data** rather than from **poor data quality**. So you can now remove duplicate names without worrying that something's fundamentally wrong with your data.

Remove duplicate names

Now that you know why there are duplicate names, you can start **removing** them. Both R and Excel have quick and straightforward functions for removing duplicates.

Removing duplicates in R is simple:

The unique function returns a vector or data frame like the one you specify, except that the duplicates are removed.

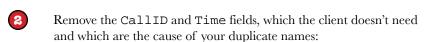
unique(mydata)

That's it! Be sure you assign the resulting value to a new name so that you can use the data unique returns.

In R, the unique function is what you need.

Removing duplicates in Excel is a snap:

Make sure your cursor is placed in your data and click this button:


To remove duplicates in Excel, use this button.

Excel will ask you to specify which columns contain the duplicate values, and data from other columns that isn't duplicated will be deleted.

So now that you have the tool you need to get rid of those pesky duplicate names, let's clean up your list and give it back to the client.

3

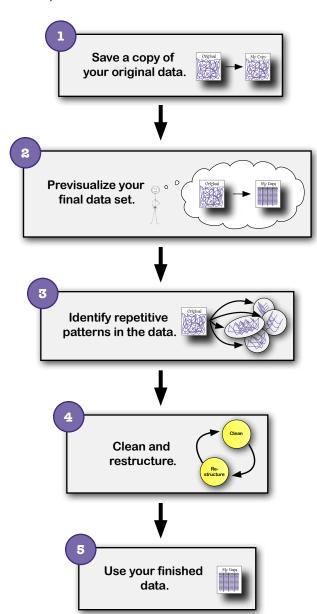
- П Create a new data frame to represent your unique records:
 - hfhhNamesOnly <- hfhhSorted

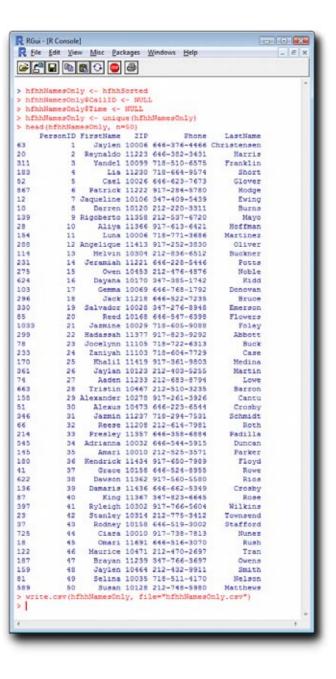
Use the unique function to remove duplicate names: hfhhNamesOnly <- unique(hfhhNamesOnly) <

hfhhNamesOnly\$CallID <- NULL hfhhNamesOnly\$Time <- NULL Here's unique in action

4 Take a look at your results and write them to a new CSV:

```
head(hfhhNamesOnly, n=50)
write.csv(hfhhNamesOnly, file="hfhhNamesOnly.csv")
```





You created nice, clean, unique records

This data looks totally solid.

No columns mashed together, no funny characters, no duplicates. All from following the basic steps of cleaning a messy data set:

Head First Head Hunters is recruiting like gangbusters!

Your list has proven to be incredibly powerful. With a clean data set of live prospects, HFHH is picking up more clients than ever, and they'd never have been able to do it without your data cleaning skills. Nice work!

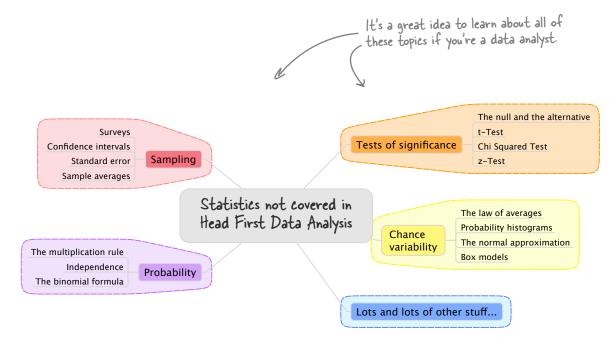
Leaving town...

It's been great having you here in Pataville!

We're sad to see you leave, but there's nothing like taking what you've learned and putting it to use. You're just beginning your data analysis journey, and we've put you in the driver's seat. We're dying to hear how things go, so *drop us a line* at the Head First Labs website, *www.headfirstlabs.com*, and let us know how data analysis is paying off for YOU!

appendix i: leftovers

* The Top Ten Things * (we didn't cover)

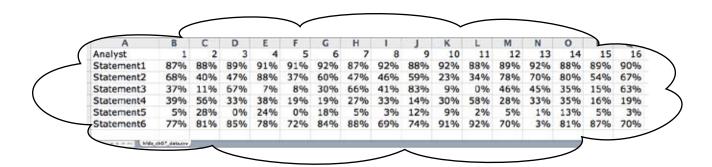

You've come a long way.

But data analysis is a vast and constantly evolving field, and there's so much left the learn. In this appendix, we'll go over ten items that there wasn't enough room to cover in this book but should be high on your list of topics to learn about next.

#1: Everything else in statistics

Statistics is a field that has a **huge array of tools and technologies** for data analysis. It's so important for data analysis, in fact, that many books about "data analysis" are really statistics books.

Here is an incomplete list of the tools of statistics not covered in *Head First Data Analysis*.


Much of what you *have* learned in this book, however, has raised your awareness of deep issues involving assumptions and model-building, preparing you not only to use the tools of statistics but also to understand their **limitations**.

The better you know statistics, the more likely you are to do great analytical work.

#2: Excel skills

This book has assumed that you have basic spreadsheet skills, but skilled data analysts tend to be spreadsheet *ninjas*.

Compared to programs like R and subjects like regression, it's not terribly hard to master Excel. And you should!

#3: Edward Tufte and his principles of visualization

Good data analysts spend a lot of time reading and rereading the work of data great analysts, and Edward Tufte is unique not only in the quality of his own work but in the quality of the work of other analysts that he collects and displays in his books. **Here are his fundamental principles of analytical design**:

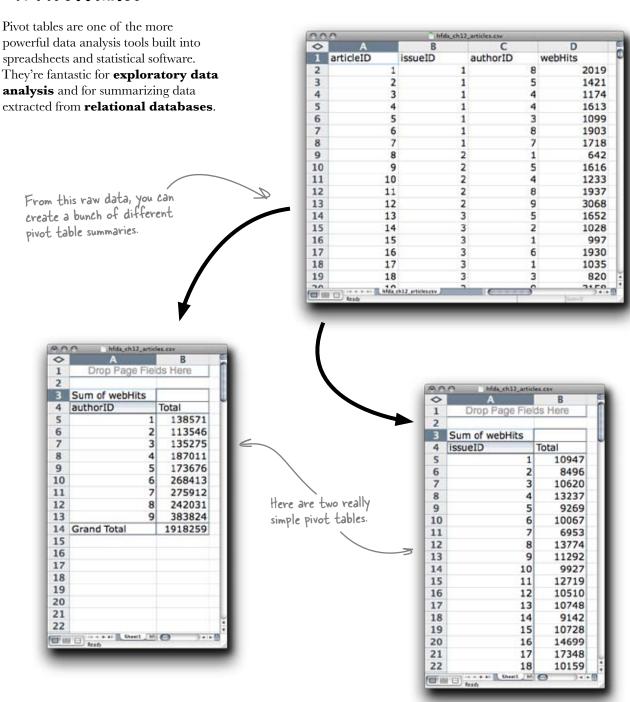
"Show comparisons, contrasts, differences."

"Show causality, mechanism, explanations, systematic structure."

"Show multivariate data; that is, show more than 1 or 2 variables."

"Completely integrate words, numbers, images, diagrams."

"Thoroughly describe the evidence."

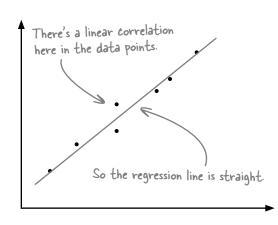

"Analytical presentations ultimately stand or fall depending on the quality, relevance, and integrity of their content."

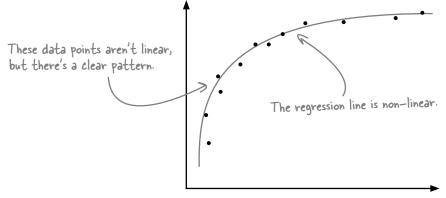
-Fdward Tufte

These words of wisdom, along with much else, are from pages 127, 128, 130, 131, 133, and 136 of his book *Beautiful Evidence*. His books are a gallery of the very best in the visualization of data.

What's more, his book *Data Analysis for Public Policy* is about as good a book on regression as you'll ever find, and you can download it for free at this website: http://www.edwardtufte.com/tufte/dapp/.

#4: PivotTables


#5: The R community


R isn't just a great software program, it's great software **platform**. Much of its power Your installation of R can have comes from a global community of user and any combination of packages contributors who contribute free packages with that suits your needs. functions you can use for your analytic domain. You got a taste of this community when you ran the xyplot function from the lattice, a legendary package for data visualization. The R Team **Economists Designers** Contributed Contributed **Package Package** R Core **Package** Contributed Contributed **Package Package Contributed Package Biologists** Your installation of R Finance people **Statisticians** You

#6: Nonlinear and multiple regression

Even if your data do not exhibit a linear pattern, under some circumstances, you can make predictions using regression. One approach would be to apply a numerical **transformation** on the data that effectively makes it linear, and another way would be to draw a **polynomial rather** than linear regression line through the dots.

Also, you don't have to limit yourself to predicting a dependent variable from a single independent variable. Sometimes there are **multiple** factors that affect the variable, so in order to make a good prediction, you can use the technique of **multiple regression**.

y = a + bx

You use data this equation to predict a dependent variable from a single independent variable.

But you can also write an equation that predicts a dependent verbal from multiple independent variables. $y = a + bx_1 + cx_2 + dx_3 + \dots$ This equation is for multiple regression.

#7: Null-alternative hypothesis testing

While the hypothesis testing technique you learned in Chapter 5 is very general and can accommodate a variety of analytical problems, **null-alternative testing** is the statistical technique many (especially in academia and science) have in mind when they hear the expression "hypothesis testing."

This tool is used more often than it's understood, and *Head First Statistics* is a great place to start if you'd like to learn it.

Given my data, what is the viability of the null hypothesis?

#8: Randomness

Randomness is a big issue for data analysis.

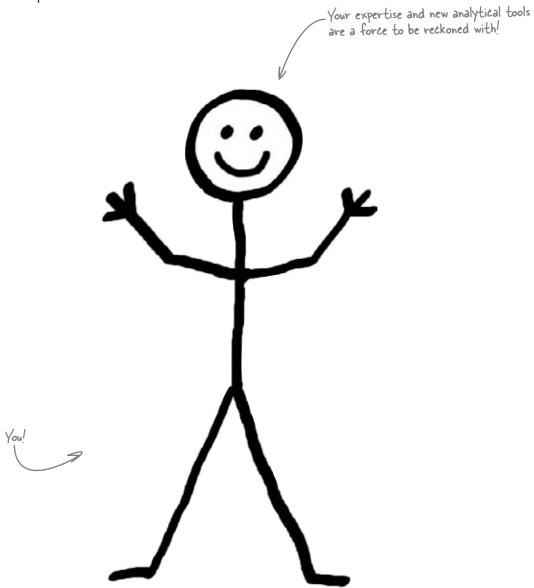
That's because **randomness is hard to see**. When people are trying to explain events, they do a great job at fitting models to evidence. But they do a terrible job at deciding against using explanatory models at all.

If your client asks you why a specific event happened, the honest answer based on the best analysis will often be, "the event can be explained by random variations in outcomes."

I never know what this guy has in store for me. He breaks every model I try to fit to his behavior. I wish I spoke English...

You can make a lot of different visualizations

#9: Google Pocs


We've talked about Excel, OpenOffice, and R, but Google Docs definitely deserves an honorable mention. Not only does **Google Docs** offer a fully functioning online spreadsheet, it has a **Gadget** feature that offers a large array of visualizations.

using the Gadget feature in Google Does. Add a Gadget ж Featured Scatter Chart By Google Interactive scatter chart. First column for X. Charts following columns for Y coordinates. Tables Add to spreadsheet It's fun to explore Maps Interactive Time Series Chart the different charts Web By Google that you can do An interactive time series line chart like the Diagrams one used in Google Finance. The first with Google Docs. column contains dates and the second Finance column contains values. Custom... Add to spreadsheet Have a better idea? **Motion Chart** Write your own gadget to By Google display data in cool new ways. Want to see your A dynamic flash based chart to explore several indicators over time. Required gadget on this list? columns: bubble name, time and 2 Submit it to us using the columns of numeric values. Optional submission form. columns: Numeric values or categories. Many of the gedgets in this directory were developed by other companies or by Google's users, not by Google. Please read Add to spreadsheet our Terms of Service and Privacy Policy

What's more, Goolge Docs has a variety of functions that offer access to **real-time online data sources**. It is free software that's definitely worth checking out.

#10: Your expertise

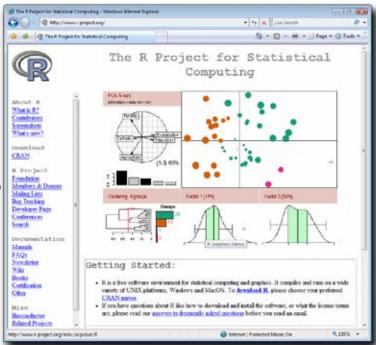
You've learned many tools in this book, but what's more exciting than any of them is that you will combine your expertise in **your domain of knowledge** with those tools to understand and improve the world. Good luck.

appendix ii: install r

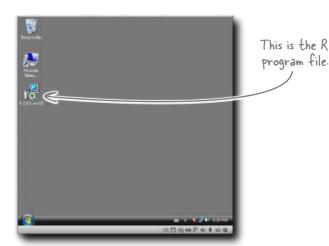
Start R up! *

Yes, I'd like to order up a wordclass statistical software package that will unleash my analytic potential and, uh, no hassles with that, please.

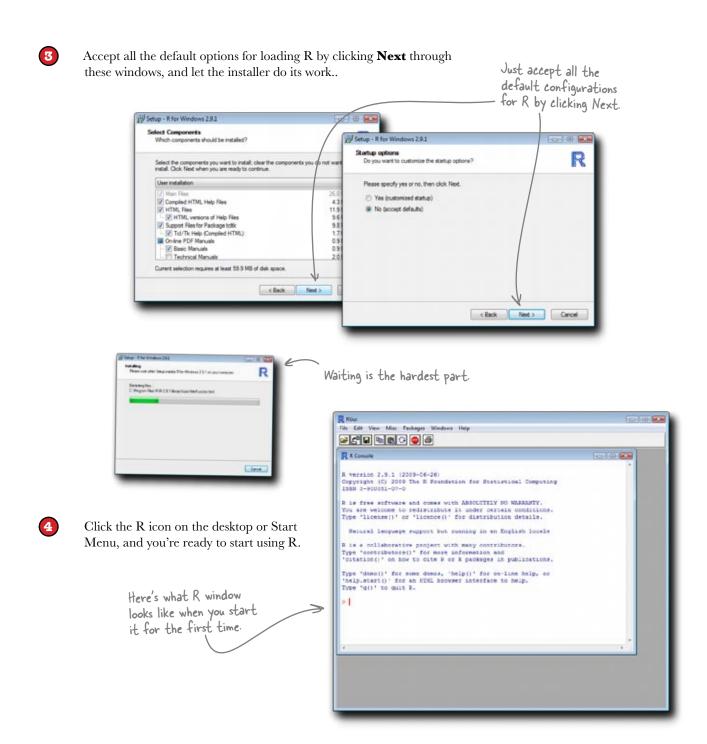
Behind all that data-crunching power is enormous complexity.


But fortunately, getting R installed and *started* is something you can accomplish in just a few minutes, and this appendix is about to show you how to pull off your R install without a hitch.

Get started with R


Installing the powerful, free, open source statistical software R can be done in these four quick and easy steps.

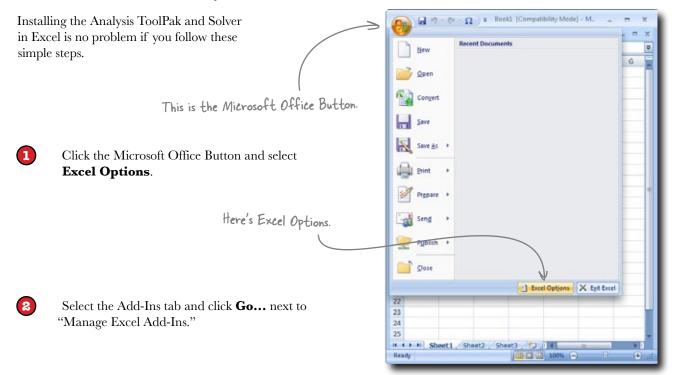
1 Head on over to www.r-project.org to download R. You should have no problem finding a mirror near you that serves R for Windows, Mac, and Linux.

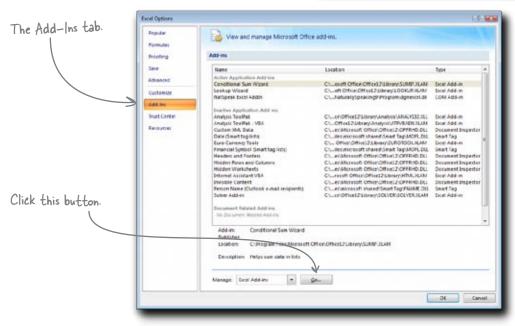


Once you've downloaded the program file for R, **double-click** on it to start the R installer.

Here's the R installer window.

appendix iii: install excel analysis tools

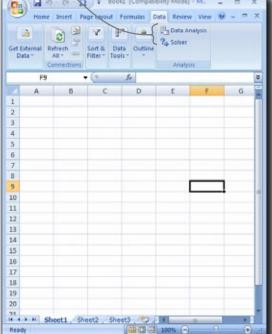

The ToolPak *



Some of the best features of Excel aren't installed by default.

That's right, in order to run the optimization from Chapter 3 and the histograms from Chapter 9, you need to activate the **Solver** and the **Analysis ToolPak**, two extensions that are included in Excel by default but not activated without your initiative.

Install the data analysis tools in Excel



That's it!

Now you're ready to start running optimizations, histograms, and much more.

Numbers

3D scatterplots, 291

Symbols

```
~ not (probability), 176
<- assign (R), 413
\ escape character, 406
| given (probability), 176
| output (R), 380
* regular expressions wildcard, 406
. regular expressions wildcard, 406
? topic information (R), 404
```

A

```
accuracy analysis, 172–174, 185–188, 214, 248, 300, 350
Adobe Illustrator, 129
algorithm, 284
alternative causal models, 131
analysis
accuracy, 172–174, 185–188, 214, 248, 300, 350
definitions of, 4, 7, 286
exploratory data, 7, 124, 421
process steps, 4, 35
step 1: define, 5–8
step 2: disassemble, 9–12, 256–258
step 3: evaluate, 13–14
step 4: decide, 15–17
purpose of, 4
Analysis ToolPak (Excel), 431–433
```

```
"anti-resume," 25
arrays (lattices) of scatterplots, 126, 291, 379–381
association
   vs. causation, 291
   linear, 291-302
assumptions
   based on changing reality, 109
   baseline set of, 11, 14
   cataloguing, 99
   evaluating and calibrating, 98-100
   and extrapolation, 321–324
   impact of incorrect, 20–21, 34, 100, 323
   inserting your own, 14
   making them explicit, 14, 16, 27, 99, 321–324
   predictions using, 322–323
   reasonableness of, 323-324
   reassessing, 24
   regarding variable independence, 103
asterisk (*), 406
averages, types of, 297
=AVG() in Excel/OpenOffice, 121
```

B

```
backslash (\), 406
baseline expectations, 254
(see also assumptions)
baseline (null) hypothesis, 155
base rate fallacy, 178
base rates (prior probabilities), 178–189
Bayes' rule and, 182–189, 218
defined, 178
how new information affects, 185–188
```

the index

Bayes' rule	clients
effect of base rate on, 182-189, 218	assumptions of, 11, 20, 26, 196-198
overview, 169, 182–183	communication with, 207
revising probabilities using, 217–223	as data, 11, 77–79, 144, 196
theory behind, 179–181	delivering bad news, 60-61, 97
Beautiful Evidence (Tufte), 420	examples of, 8, 16, 26
Behind the Scenes	explaining limits of prediction, 322, 326, 332–335 356–357
R.M.S. error formula, 338	explaining your work, 33–34, 94–96, 202–204, 246
R regression object, 306	helping them analyze their business, 7, 33-34, 108
bell curve, 270	130, 240, 382
blind spots, 25–27	helping you define problem, 6, 38, 132, 135, 232, 362
Bullet Points	visualizations, 115, 206, 222, 371
client qualities, 6	listening to, 132, 135, 313, 316, 388
questions you should always ask, 286	mental models of, 20, 26
things you might need to predict, 286	professional relationship with, 14, 40, 327
	understanding/analyzing your, 6, 119, 283
C	cloud function, 114, 291
	code examples (see Ready Bake Code)
candidate hypothesis, 155	coefficient
cataloguing assumptions, 99	correlation (r), 300–303, 338
causation	defined, 304
alternative models, 131	"cognitive art," 129, 420
vs. association, 291	comparable, defined, 67
causal diagrams, 46, 48	comparisons
causal networks, 148, 149	break down summary data using, 10
flipping cause and effect, 45	evaluate using, 13, 73
and scatterplots, 291–292	of histograms, 287–288
searching for causal relationships, 124, 130	and hypothesis testing, 155, 158–162
chance error (residuals)	and linked tables, 366
defined, 330	making the right, 120
and managing client expectations, 332-335	method of, 42, 58
and regression, 335	multivariate, 125–129, 291
residual distribution, 336–337	and need for controls, 58–59
(see also Root Mean Squared [R.M.S.] error)	and observational data, 43, 47
Chance Error Exposed Interview, 335	of old and new, 221–222
charting tools, comparing, 129, 211	with RDBMS, 382 valid, 64, 67–68
cleaning data (see raw data)	visualizing your, 72, 120–123, 126, 288–293

=CONCATENATE() in Excel/OpenOffice, 398, 399,	heterogeneous, 155
403	importance of comparison of, 42
conditional probabilities, 176-177, 182	messy, 410
confounders	observations about, 13
controlling for, 50, 63–65, 67	paired, 146, 291
defined, 47	quality/replicability of, 303
and observational studies, 45, 49	readability of, 386, 399 scant, 142, 231–232
constraints	segmentation (splitting) of, 346–348, 352, 354
charting multiple, 84–87	subsets, 271–276, 288
defined, 79	summary, 9–10, 256, 259–262
and feasible region, 85, 87	"too much," 117–119
as part of objective function, 80-82, 100	when to stop collecting, 34, 118–120, 286
product mixes and, 83	(see also raw data; visualizations)
quantitative, 100	data analysis (see analysis)
in Solver utility, 92–94, 104–106	Data Analysis for Public Policy (Tufte), 420
contemporaneous controls, 59	data analyst performance
control groups, 58–59, 62–67	empower yourself, 15
controls	insert yourself, 14
contemporaneous, 59	not about making data pretty, 119
historical, 59, 66	professional relationship with clients, 14, 40, 327
possible and impossible, 78–79	showing integrity, 131, 327
Convert Text to Column Wizard (Excel), 394–395	data art, 129
cor() command in R, 301–302	databases, 365
correlation coefficient (r), 300-303, 338	defined, 365
=COUNTIF() in Excel/OpenOffice, 368	relational databases, 359, 364–370
CSV files, 371, 405, 407	software for, 365
	data cleaning (see raw data)
curve, shape of, 266–270 custom-made implementation, 365	data visualizations (see visualizations)
	decide (step 4 of analysis process), 15-17
	decision variables, 79–80, 92, 233
D	define (step 1 of analysis process), 5–8
	defining the problem, 5–8
data	delimiters, 394–395
constantly changing, 311	
diagnostic/nondiagnostic, 159–162	dependent variables, 124, 423
distribution of, 262	diagnosticity, 159–162
dividing into smaller chunks, 9–10, 50, 256, 271–275, 346–348	disassemble (step 2 of analysis process), 9–12, 256–258
duplicate, in spreadsheet, 408–413	distribution, Gaussian (normal), 270

the index

distribution of chance error, 336	charting tools in, 129, 211, 260-262
distribution of data, 262	Chart Output checkbox, 261
diversity of outcomes, 318, 328–329	=CONCATENATE() formula, 398, 399, 403
•	Convert Text to Column Wizard, 394–395
dot (.), 406	=COUNTIF() formula, 368
dot plots, 206	Data Analysis, 260
(see also scatterplots)	=FIND() formula, 398, 403
duplicate data, eliminating, 408–413	histograms in, 260–262
•	Input Range field, 261
	=LEFT() formula, 398, 399, 403
${f E}$	=LEN() formula, 398, 403
	nested searches in, 403
edit() command in R, 264	no regular expressions in, 407
equations	Paste Special function, 400
linear, 304	pivot tables in, 421
multiple regression, 423	=RAND() formula, 68
objective function, 81	Remove Duplicates button, 413
regression, 306, 308–310, 318, 321–326, 356	=RIGHT() formula, 398, 399, 403
slope, 305, 308	Solver utility
error	Changing Cells field, 93
	installing/activating, 431–433 Target Cell field, 92, 93
managing, through segmentation, 346–348 quantitative, 332–338	specifying a delimiter, 394
variable across graph, 344–345	standard deviation in, 208, 210
(see also chance error; Root Mean Squared [R.M.S.]	=STDEV() formula, 208, 210
error)	=SUBSTITUTE() formula, 398–402
error bands, 339–340, 352	=SUMIF() formula, 369–370
	text formulas, 398–402
escape character (\), 406	=TRIM() formula, 398
ethics	=VALUE() formula, 398
and control groups, 59	experiments
showing integrity toward clients, 131, 327	control groups, 58–59, 62–67
evaluate (step 3 of analysis process), 13-14	example process flowchart, 71
evidence	vs. observational study, 43, 54, 58–59
diagnostic, 159–162	overview, 37
in falsification method, 154	randomness and, 66–68
handling new, 164–166, 217–223	for strategy, 54, 62–65
model/hypothesis fitting, 144–145	exploratory data analysis, 7, 124, 421
Excel/OpenOffice	extrapolation, 321–322, 326, 356
=AVG() formula, 121	CAU apolation, 321 322, 320, 330
Bayes' rule in, 220	
··/	

T	heterogeneous data, 155
\mathbf{F}	heuristics
false negatives, 176–181	and choice of variables, 240
false positives, 175–181	defined, 237
falsification method of hypothesis testing, 152–155	fast and frugal tree, 239, 242, 244 human reasoning as, 237–238
fast and frugal trees, 239, 242, 244	vs. intuition, 236
feasible region, 85, 87	overview, 225, 235–236
=FIND() in Excel/OpenOffice, 398, 403	rules of thumb, 238, 244
Fireside Chat (Bayes' Rule and Gut Instinct), 218	stereotypes as, 244 strengths and weaknesses of, 238, 244
flipping the theory, 45	hist() command in R, 265–266, 272
frequentist hypothesis testing, 155	histograms
	in Excel/OpenOffice, 260–262
G	fixing gaps in, 263
U	fixing multiple humps in, 269–276
Gadget (Google Docs), 425	groupings of data and, 258–266, 269–270, 274 normal (bell curve) distribution in, 270
Galton, Sir Francis, 298	overlays of, 288
gaps	overview, 251
in histograms, 263	in R, 265–268
knowledge, 25–27	vs. scatterplots, 292
gaps in histograms, 263	historical controls, 59, 66
Gaussian (normal) distribution, 270	human reasoning as heuristic, 237–238
Geek Bits	hypothesis testing
regex specification, 404	diagnosticity, 159–162
slope calculation, 308	does it fit evidence, 144–145
getwd() command in R, 371, 407	falsification method, 152–155
Google Docs, 425	frequentist, 155 generating hypotheses, 150
granularity, 9	overview, 139
graphics (see visualizations)	satisficing, 152
graph of averages, 297–298	weighing hypotheses, 158–159
groupings of data, 258–266, 269–270, 274	
	Ţ
LT .	1
4	Illustrator (Adobe), 129
head() command in R, 291–292, 372, 405	independent variables, 103, 124
Head First Statistics, 155, 424	intercepts, 304, 307, 340
help() command in R, 267	internal variation, 50

the index

interpolation, 321 intuition vs. heuristics, 236 inventory of observational data, 43 iterative, defined, 393

J

jitter() command in R, 372

K

knowledge gaps, 25-27

L

lattices (arrays) of scatterplots, 126, 291, 379–381 =LEFT() in Excel/OpenOffice, 398, 399, 403 =LEN() in Excel/OpenOffice, 398, 403 library() command in R, 379–380 linear association, 291–302 linear equation, 304 linearity, 149, 303 linear model object (lm), 306, 338, 340 linear programming, 100 linked spreadsheets, 361, 366, 369–371, 374 linked variables, 103, 146–148 lm() command in R, 306–309, 338, 340, 353–354

M

measuring effectiveness, 228–232, 242, 246 mental models, 20–27, 150–151, 311 method of comparison, 42, 58 Microsoft Excel (see Excel/OpenOffice) Microsoft Visual Basic for Applications (VBA), 407 models

fit of, 131
impact of incorrect, 34, 97–98
include what you don't know in, 25–26
making them explicit, 21, 27
making them testable, 27
mental, 20–27, 150–151, 238, 311
need to constantly adjust, 98, 109
segmented, 352
statistical, 22, 27, 238, 330
with too many variables, 233–235
multi-panel lattice visualizations, 291
multiple constraints, 84–87
multiple predictive models, 346
multiple regression, 298, 338, 423
multivariate data visualization, 123, 125–126, 129, 291

N

negatively linked variables, 103, 146–148 networked causes, 148, 149 nondiagnostic evidence, 160 nonlinear and multiple regression, 298, 338, 423 normal (Gaussian) distribution, 270 null-alternative testing, 424 null (baseline) hypothesis, 155

0

objective function, 80–82, 92, 233 objectives, 81, 92, 99, 118–120, 233 "objectivity," 14 observational studies, 43, 45, 59 OpenOffice (see Excel/OpenOffice) operations research, 100

optimization	prediction
and constraints, 79, 100, 103-105	balanced with explanation, 350
vs. falsification, 155	and data analysis, 286
vs. heuristics, 236–238	deviations from, 329–330
overview, 75	explaining limits of, 322, 326, 332–333, 335, 356
solving problems of, 80–81, 85, 90	outside the data range (extrapolation), 321–322, 326
using Solver utility for, 90–94, 106–107	356
order() command in R, 409	and regression equations, 310
outcomes, diversity of, 318, 328-329	and scatterplots, 294–300
out-of-the-box implementation, 365	prevalence, effect of, 174
overlays of histograms, 288	previsualizing, 390–393, 414
, , ,	prior probabilities (see base rates [prior probabilities])
_	probabilities
P	Bayes' rule and, 182–189
1	calculating false positives, negatives, 171-176, 182
paired data, 146, 291	common mistakes in, 172–176
perpetual, iterative framework, 109	conditional, 176–177, 182
pipe character ()	(see also subjective probabilities)
in Bayes' rule, 176	probability histograms, 418
in R commands, 380	product mixes, 83–89, 100
pivot tables, 421	
plot() command in R, 291–292, 372	
	O
polynomial regression, 423	
positively linked variables, 146–148	quantitative
practice downloads (www.headfirstlabs.com/books/hfda/)	constraints, 100
bathing_friends_unlimited.xls, 90	errors, 332–338
hfda_ch04_home_page1.csv, 121	linking of pairs, 146
hfda_ch07_data_transposed.xls, 209	making goals and beliefs, 8
hfda_ch07_new_probs.xls, 219	relationships, 376 relations in RDBMS, 376
hfda_ch09_employees.csv, 255	theory, 233, 303
hfda_ch10_employees.csv, 291, 338	•
hfda_ch12_articleHitsComments.csv, 379	querying
hfda_ch12_articles.csv, 367	defined, 375
hfda_ch12_issues.csv, 367	linear model object in R, 340
hfda_ch12_sales.csv, 369	SQL, 379
hfda_ch13_raw_data.csv, 386	question mark (?) in R, 404
hfda.R, 265	
historical_sales_data.xls, 101	

D	Randomness Exposed Interview, 68
R	random surveys, 40–44, 50–52, 73, 228–234
R	rationality, 238
charting tools in, 129 cloud function, 291 command prompt, 264 commands ?, 404 cor(), 301–302 edit(), 264 getwd(), 371, 407 head(), 291–292, 372, 405	raw data disassembling, 9–10, 255–259 evaluating, 28–32 flowchart for cleaning, 414 previsualize final data set, 390, 392–394 using delimiter to split data, 394–395 using Excel nested searches, 403 using Excel text formulas, 398–402 using R regular expression searches, 404–408
help(), 267 hist(), 265–266, 272 jitter(), 372	using R to eliminate duplicates in, 408–413 RDBMS (relational database management system),
library(), 379–380 lm(), 306–309, 338, 340, 353–354	376–378, 382, 412, 421 read.csv() command in R, 291
order(), 409 plot(), 291–292, 372 read.csv(), 291 save.image(), 265 sd(), 268, 276	Ready Bake Code calculate r in R, 301–302 generate a scatterplot in R, 291–292 recommendations (see reports to clients)
source(), 265 sub(), 405–406 summary(), 268, 276, 339 unique(), 413 write.csv(), 413 xyplot(), 379–380 community of users, 422 defaults, 270 described, 263 dotchart function in, 211	regression balancing explanation and prediction in, 350 and chance error, 335 correlation coefficient (r) and, 302–303 Data Analysis for Public Policy (Tufte), 420 linear, 307–308, 338, 423 linear correlation and, 299–305 nonlinear regression, 298, 338, 423 origin of name, 298
histograms in, 265–268 installing and running, 264–265, 428–429 pipe character () in, 380 regular expression searches in, 404–408 scatterplot arrays in, 126 r (correlation coefficient), 300–303, 338	overview, 279, 298 polynomial, 423 and R.M.S. error, 337 and segmentation, 348, 352, 354 regression equations, 306, 308–310, 318, 321–326, 356
=RAND() in Excel/OpenOffice, 68	regression lines, 298, 308, 321, 337, 348
randomized controlled experiments, 40, 66–68, 70, 73, 113	regular expression searches, 404–408 relational database management system (RDBMS), 376–378, 382, 412, 421
randomness, 68, 424	relational databases, 359, 364–370

replicability, 303	sd() command in R, 268, 276
reports to clients	segmentation, 346-348, 352, 354
examples of, 16, 34, 96, 136, 246, 248, 356	segments, 266, 318, 343, 350, 353
guidelines for writing, 14–16, 33, 310	self-evaluations, 252
using graphics, 16, 31, 48, 72, 154, 310	sigma (see Root Mean Squared [R.M.S.] error)
representative samples, 40, 322	slope, 305–308, 340
residual distribution, 336–337	Solver utility, 90–94, 100, 431–433
residuals (see chance error)	sorting, 209–210, 409–410
residual standard error (see Root Mean Squared [R.M.S.] error)	source() command in R, 265
=RIGHT() in Excel/OpenOffice, 398, 399, 403	splitting data, 346–348, 352, 354
rise, defined, 305	spread of outcomes, 276
Root Mean Squared (R.M.S.) error compared to standard deviation, 337 defined, 336–337 formula for, 338 improving prediction with, 342, 354–356 in R, 339–340, 354 regression and, 338 rules of thumb, 238, 244 run, defined, 305	spreadsheets charting tools, 129 linked, 361, 366, 369–371, 374 provided by clients, 374 (see also Excel/OpenOffice) SQL (Structured Query Language), 379 standard deviation calculating the, 210, 268, 276 defined, 208 and R.M.S. error calculation, 338 and standard units, 302, 337 =STDEV, 208
	standard units, 302
sampling, 40, 322, 418	statistical models, 22, 27
satisficing, 152	=STDEV() in Excel/OpenOffice, 208, 210
save.image() command in R, 265	stereotypes as heuristics, 244
scant data, 142, 231–232	strip, defined, 296
scatterplots	Structured Query Language (SQL), 379
3D, 291	sub() command in R, 405–406
creating from spreadsheets in R, 371–373	subjective probabilities
drawing lines for prediction in, 294–297 vs. histograms, 292	charting, 205–206
lattices (arrays) of, 126, 291, 379–381	defined, 198
magnet chart, 290	describing with error ranges, 335
overview, 123–124, 291	overcompensation in, 218
regression equation and, 309	overview, 191
regression lines in, 298–300	quantifying, 201

subjective probabilities (continued) revising using Bayes' rule, 217–223	ΤŢ
strengths and weaknesses of, 211	U
subsets of data, 271–276, 288	ultra-specified problems, 237 uncertainty, 25–27, 342
=SUBSTITUTE() in Excel/OpenOffice, 398–402	
=SUMIF() in Excel/OpenOffice, 369–370	unique() command in R, 413
summary() command in R, 268, 276, 339	Up Close
summary data, 9–10, 256, 259–262	conditional probability notation, 176
surprise information, 18, 212-213	confounding, 64
surveys, 40–44, 50–52, 73, 228–234	correlation, 302
	histograms, 263
T	your data needs, 78 your regular expression, 406
1	your regular expression, 400
tag clouds, 114, 291	1 7
Test Drive	V
Using Excel for histograms, 260–261	=VALUE() in Excel/OpenOffice, 398
Using R to get R.M.S. error, 339–340	variables
Using Solver, 93–94	decision, 79–80, 92, 233
tests of significance, 418	dependent, 124, 423
theory (see mental models)	independent, 103, 124
thinking with data, 116	linked, 103, 146–148
tilde (~), 176	multiple, 84, 123–126, 129, 291, 359 two, 291–292
ToolPak (Excel), 431–433	variation, internal, 50
transformations, 423	
=TRIM() in Excel/OpenOffice, 398	vertical bar () in Bayes' rule, 176
troubleshooting	in R commands, 380
activating Analysis ToolPak, 431–433	Visual Basic for Applications (VBA), 407
Data Analysis button missing, 260, 431–433	visualizations
gaps in Excel/OpenOffice histograms, 262–263	Beautiful Evidence (Tufte), 420
histogram not in chart format, 261	causal diagrams, 46, 48
read.csv() command in R, 291 Solver utility not on menu, 90, 431–433	data art, 129
true negatives, 175–181	examples of poor, 83, 114–115
true positives, 176–181	fast and frugal trees, 239, 242, 244
Tufte, Edward, 129, 420	making the right comparisons, 120–123 multi-panel lattice, 291
two variable comparisons, 291–292	multivariate, 123, 125–126, 129, 291
two variable comparisons, 291–292	

overview, 111 in reports, 16, 72, 96 software for, 129, 211 (see also histograms; scatterplots)

Watch it!

always keep an eye on your model assumptions, 323 always make comparisons explicit, 42 does your regression make sense?, 306 way off on probabilities, 172, 184

websites

to download R, 264, 428 Edward Tufte, 420 Head First, 416 tag clouds, 114 whole numbers, 182 wildcard search, 406 write.csv() command in R, 413

xyplot() command in R, 379-380

y-axis intercept, 304, 307, 340

